
Precise coding with noiseless feedback

by

David Lawrence desJardins

S.B. (Massachusetts Institute of Technology), 1983

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Elwyn Berlekamp, Chair
Professor David Eisenbud

Professor Christos Papadimitriou

Fall 2001

The dissertation of David Lawrence desJardins is approved:

Chair Date

Date

Date

University of California at Berkeley

Fall 2001

1

Abstract

Precise coding with noiseless feedback

by

David Lawrence desJardins

Doctor of Philosophy in Mathematics

University of California at Berkeley

Professor Elwyn Berlekamp, Chair

The construction of block codes for communicating over discrete, noisy channels

is a central problem of information theory. A block code is a collection of codewords

with the property that if the sender chooses one of the codewords to transmit, and no

more than a specified number of errors occur, then the recipient can with certainty

determine which of the codewords was sent.

If the recipient is also able to transmit information to the sender, instantly and

without error, then the theoretical information capacity of the forward channel is not

increased, but our ability to utilize that capacity with a coding scheme is enhanced.

Assume a binary forward channel. The reverse channel can be used to transmit to

the sender, after each bit is sent, the value of the bit as received by the recipient.

The sender can then use that information in deciding what bit to send next. By an

adaptive block code, we mean a mapping from codewords to labeled binary trees: for

each codeword, we send a sequence of bits, where each bit sent may depend not only

on the codeword but on all of the received values of the previous bits. We require

that the recipient be able to determine which codeword was chosen, so long as no

more than a specified number of errors occur.

We demonstrate that for many choices of parameters, adaptive block codes may be

constructed that are much better than standard block codes that do not assume the

possibility of feedback. For a wide range of parameters, we construct precisely optimal

2

adaptive block codes, which contain the maximum possible number of codewords,

given the length of the codes and the number of errors they tolerate.

The construction of adaptive block codes is equivalent to the formulation of strate-

gies for a game described by Ulam, a version of “Twenty Questions” with lies. Our

results resolve Ulam’s open question about that game: given 106 objects, how many

binary questions are required to identify a particular object, when the answerer is

permitted to lie a fixed number of times?

Professor Elwyn Berlekamp
Dissertation Committee Chair

iii

Contents

List of Figures v

1 Introduction and preliminaries 1
1.1 Block codes . 1
1.2 Adaptive block codes . 3
1.3 Ulam’s game . 4
1.4 State-space formulation . 6
1.5 Volume bound . 9
1.6 Borderline states . 10
1.7 Doublets . 12
1.8 Zero-error states . 12
1.9 Dominated states . 13
1.10 Translation bound . 14
1.11 Infinite state sequences . 15
1.12 Fibonacci states . 16

2 Computational methods 19
2.1 Summation rule for states . 19
2.2 Summation rule for state sequences 21
2.3 Game trees for states . 21
2.4 Game trees for state sequences . 23
2.5 Truncated state sequences . 24
2.6 Losing states . 25
2.7 A three-step losing state . 28

3 Optimal codes 30
3.1 Main Result . 30
3.2 Upper bounds on M . 31
3.3 Search algorithm for states . 33
3.4 Partitioning algorithm . 34
3.5 Summation algorithm . 35

iv

3.6 Lifting game trees . 36
3.7 Computational Results . 37

A Program Listing 39

B Program Output 52

Bibliography 64

v

List of Figures

1

Chapter 1

Introduction and preliminaries

1.1 Block codes

Consider the problem of transmitting a message through a noisy channel. We

will generally restrict our attention to the symmetric binary channel: the sender

transmits one bit at a time, an element of {0, 1}, and the receiver receives that bit

with probability 1 − g, or the complementary bit with probability g, where g is in

the interval (0, 1/2). When the received bit differs from the transmitted bit, this is

considered an error.

If N > 0 bits are transmitted through the binary symmetric channel, it is pos-

sible (albeit unlikely) that all of the bits are received in error. In order to make a

deterministic analysis possible, coding theorists frequently consider the case where it

is assumed that no more than E errors occur, for some E between 0 and N . If we fix

an error-correction fraction f > g, then for sufficiently large N , we can say almost

surely that the number of errors E will be less than fN . So schemes that correct a

fixed number of errors are useful in practice.

A central problem of coding theory is the following: given that N bits are trans-

mitted, and no more than E errors occur, what is the maximum number of distinct

messages M that may be sent without any possibility of error on the part of the

recipient? A construction that permits this is called a block code, the integer N is

called the length of the code, and the integer E is called the error-correction capacity.

2

Definition 1 (Hamming weight). H(x1, . . . , xK) is the number of the xi that are

nonzero.

Definition 2 (Block code). A block code of length N and error-correcting capacity

E is a sequence of functions

tI : {1, 2, . . . ,M} → {0, 1},

for I = 1, 2, . . . , N , with the following equivalent properties:

• For any m 6= m′, there are at least 2E+ 1 values of I such that tI(m) 6= tI(m
′).

• For any m 6= m′, and any binary tuples (e1, . . . , eN) and (e′1, . . . , e
′
N) with

H(e1, . . . , eN) ≤ E and H(e′1, . . . , e
′
N) ≤ E, there must be some I such that

tI(m)⊕ eI is not equal to tI(m
′)⊕ e′I .

Definition 3 (Rate). The rate of a block code is

R = (lgM)/N.

Definition 4 (Error-correction fraction). The error-correction fraction of a block

code is

f = E/N.

To use the block code to transmit a message m, we send the sequence of bits

(t1(m), . . . , tN(m)).

If an error pattern (e1, . . . , eN) occurs, the receiver receives the tuple

(t1(m)⊕ e1, . . . , tN(m)⊕ eN).

Under the hypothesis that H(e1, . . . , eN) ≤ E, there is no other message m′ and error

pattern (e′1, . . . , e
′
N) with H(e′1, . . . , e

′
N) ≤ E that would cause the same tuple to be

received. So the receiver can uniquely identify the message m, and the error pattern

(e1, . . . , eN).

3

1.2 Adaptive block codes

We are concerned with a variation of the above problem. Assume that after each

bit is transmitted, the receiver has the opportunity to transmit an unlimited amount

of information, instantly and without the possibility of error, to the sender. We can

easily conclude that the receiver cannot gain any advantage by sending any more

information than a single bit per received bit: the value of the received bit. This is

the only information that the receiver has and the sender does not.

Shannon (1956) showed that this feedback cannot increase the theoretical capacity

of the forward channel. Nevertheless, as we shall see, the feedback does prove useful

at code rates below capacity. It can be used for more explicit encoding and decoding

strategies, and at sufficiently low rates, can significantly improve the error-correction

capability.

An adaptive block code has the same parameters N , E, and M as a standard

block code, defined above. The sender agrees in advance with the receiver on a

communication scheme. The sender then is given one of M messages to send. Based

on that choice, the sender then transmits bits, one at a time. After each bit is sent,

the sender learns whether an error occurred in sending that bit, and can use that

information in deciding what bit to send next. After N bits are sent, the receiver

must be able to determine which one of the M messages was chosen, under the

assumption that no more than E errors occurred.

Definition 5 (Adaptive block code). An adaptive block code of length N and

error-correcting capacity E is a sequence of functions

tI : {1, 2, . . . ,M} × {0, 1}I−1 → {0, 1}

for I = 1, 2, . . . , N . The functions tI must have the property:

• For any m 6= m′ and any binary tuples (e1, . . . , eN) and (e′1, . . . , e
′
N) with

H(e1, . . . , eN) ≤ E and H(e′1, . . . , e
′
N) ≤ E, then there must be some I such

that tI(m, e1, . . . , eI−1)⊕ eI is not equal to tI(m
′, e′1, . . . , e

′
I−1)⊕ e′I .

The rate and error-correction fraction are defined as for a block code.

4

To use the adaptive block code to transmit a message m, we send the sequence of

bits

(t1(m), t2(m, e1), . . . , tN(m, e1, . . . , eN−1)),

where ei is 1 if an error occurred in transmitting the i-th bit and 0 otherwise. Note

that tI(m) depends only upon information available to the sender, from the feedback

channel, after transmitting the first I−1 bits. If an error pattern (e1, . . . , eN) occurs,

the receiver receives the tuple

(t1(m)⊕ e1, t2(m, e1)⊕ e2, . . . , tN(m, e1, . . . , eN−1)⊕ eN).

Under the hypothesis that H(e1, . . . , eN) ≤ E, there is no other message m′ and error

pattern (e′1, . . . , e
′
N) with H(e′1, . . . , e

′
N) ≤ E that would cause the same tuple to be

received. So the receiver can uniquely identify the message m, and the error pattern

(e1, . . . , eN).

1.3 Ulam’s game

In his autobiography, Stanislaw Ulam proposes the following game, “a variation

on the game of Twenty Questions”:

Someone thinks of a number between one and one million (which is just
less than 220). Another person is allowed to ask up to twenty questions,
to each of which the first person is supposed to answer only yes or no.
Obviously the number can be guessed by asking first, “Is the number in
the first half million?” then again reduce the reservoir of numbers in the
next question by one-half, and so on. Finally the number is obtained in
less than log2(1, 000, 000). Now suppose one were allowed to lie once or
twice, then how many questions would one need to get the right answer?
One clearly needs more than n questions for guessing one of 2n objects
because one does not know when the lie was told. This problem is not
solved in general.

We can formalize Ulam’s game as follows.

Game 1 (Ulam’s game). Alice secretly chooses a number from {1, 2, . . . ,M}. Bob

then asks questions, one at a time, each of which is a subset of {1, 2, . . . ,M}. Alice

5

answers each question with 1 (the secret number is in the set) or 0 (the secret number

is not in the set). Bob is allowed N questions, and Alice is constrained that at most

E of her answers may be false. Bob’s goal is a questioning strategy such that, after

the N questions, he has uniquely identified the secret number.

It turns out that the existence of winning strategies for Ulam’s game is exactly

equivalent to the existence of adaptive block codes.

Theorem 1. Bob has a winning strategy for Ulam’s game with parameters N , E, M

if and only if there exists an adaptive block code with the same parameters.

Proof. First, suppose that we are given an adaptive block code; we use this to generate

a winning strategy for Ulam’s game. Bob’s first question is the set {m|t1(m) = 1},
to which Bob receives the reply r1. Bob can then compute the function e1(m) =

r1 ⊕ t1(m), which indicates whether Alice answered the first question falsely un-

der the hypothesis that the secret value is m. Bob’s second question is the set

{m|t2(m, e1(m)) = 1}, to which Bob receives the reply r2. Bob can then compute

the function e2(m) = r2 ⊕ t2(m, e1(m)), which indicates whether Alice answered the

second question falsely under the hypothesis that the secret value is m. Bob’s third

question is the set {m|t3(m, e1(m), e2(m)) = 1}, and so on.

After N questions, Bob can compute for each m the tuple (e1(m), . . . , eN(m)).

By the constraint that Alice may answer falsely at most E times, we know that for

the actual secret m, H(e1(m), . . . , eN(m)) ≤ E. Suppose that there is some other

m′ such that H(e1(m′), . . . , eN(m′)) ≤ E. Then, by the definition of the adaptive

block code, there must be some I such that tI(m, e1(m), . . . , eI−1(m)) ⊕ eI(m) 6=
tI(m

′, e1(m′), . . . , eI−1(m′)) ⊕ eI(m′). But, by the definition of the function eI , both

sides of this inequality are equal to rI .

Second, suppose that we are given a winning strategy for Ulam’s game; we use this

to construct an adaptive block code. Let S1 be Bob’s first question. We define t1(m)

to be 1 if m ∈ S1, 0 otherwise. Let S2(r1) be Bob’s second question, given that the

response to the first question was r1. Define t2(m, e1) to be 1 if m ∈ S2(e1⊕ t1(m)), 0

otherwise. Let S3(r1, r2) be Bob’s third question, given the first two responses. Define

t3(m, e1, e2) to be 1 if m ∈ S3(e1 ⊕ t1(m), e2 ⊕ t2(m, e1)), 0 otherwise. And so on.

6

Consider any m 6= m′, and (e1, . . . , eN) and (e′1, . . . , e
′
N), with H(e1, . . . , eN) ≤ E

and H(e′1, . . . , e
′
N) ≤ E. Suppose that eI⊕tI(m, e1⊕t1(m), . . . , eI−1⊕tI−1(m)) equals

e′I ⊕ tI(m′, e′1 ⊕ t1(m′), . . . , e′I−1 ⊕ tI−1(m′)) for every I = 1, 2, . . . , N . Then if Alice

chooses m as the secret number, and gives false answers for those values of I such

that eI = 1, then Bob will ask exactly the same questions and receive exactly the

same answers as if Alice chooses m′ as the secret number, and gives false answers for

those values of I such that e′I = 1. So, by the assumption that Bob’s questioning

strategy is valid, no such m and m′ can exist; this proves that the functions tI form

an adaptive block code.

Note that if we modify Ulam’s game so that Alice does not have to fix her secret

choice at the beginning of the game, but only must answer all of the questions in

such a way that they are consistent with some possible secret, then the question of

existence of a winning strategy for Bob is unchanged. If Bob has a strategy that

always wins when Alice chooses her secret in advance, then the same strategy must

always win even if Alice is not forced to commit to a particular secret at the start.

1.4 State-space formulation

In this section we present another equivalent formulation of the construction of

adaptive block codes, or questioning strategies for Ulam’s game. Given integers N ,

E, and M , we will consider a game played with finite tuples of nonnegative integers.

We will delete trailing zeroes from the tuples, so that the (E+1)-tuple (s0, s1, . . . , sE)

is equivalent to the E-tuple (s0, s1, . . . , sE−1) if sE = 0.

Definition 6 (Translation operator). We define an operator T on tuples of non-

negative integers. (The letter T denotes “translation”.) Given the (E + 1)-tuple

s = (s0, s1, . . . , sE),

Ts = (s1, s2, . . . , sE, 0) = (s1, s2, . . . , sE).

Game 2 (Tuple-game). The tuple-game has N rounds, and begins with an (E+1)-

tuple of natural numbers, s0 ∈ NE+1. First, Bob partitions s0 into a0,b0 ∈ NE+1 such

7

that s0 = a0 + b0. Then, Alice chooses either Ta0 + b0 or a0 + Tb0, and her choice

becomes s1. Then the process is repeated: Bob chooses a1,b1 ∈ NE+1 such that

s1 = a1 + b1, and Alice chooses either Ta1 + b1 or a1 + Tb1 to be s2. And so on. At

the end of N rounds, Bob wins the game if the sum of the elements of sN is 0 or 1;

Alice wins otherwise.

Theorem 2. Let s0 be the (E + 1)-tuple (0, 0, . . . , 0,M). Bob has a winning strategy

for the tuple-game with N rounds and initial state s0 if and only if Bob has a winning

strategy for Ulam’s game with parameters N , E, M .

Proof. First, suppose that we are given a winning strategy for the tuple-game; we use

this to generate a winning strategy for Ulam’s game.

Suppose that I questions S1, S2(r1), . . . , SI(r1, . . . , rI−1) have been asked in Ulam’s

game, with answers (r1, . . . , rI). For any m ∈ {1, 2, . . . ,M}, we can compute:

e1(m) = r1 ⊕ t1(m), where t1(m) is 1 if m ∈ S1, 0 otherwise; e2(m) = r2 ⊕
t2(m, e1(m)), where t2(m, e1(m)) is 1 if m ∈ S2(r1), 0 otherwise; and so on to

eI(m) = rI ⊕ tI(m, e1(m), . . . , eI−1(m)), where tI(m, e1(m), . . . , eI−1(m)) is 1 if m ∈
SI(r1, . . . , rI−1), 0 otherwise. We can then define EI(m) = E −H(e1(m), . . . , eI(m)).

A winning strategy for Ulam’s game is one which has, for every sequence (r1, . . . , rN),

EN(m) ≥ 0 for at most one value of m.

Given a partial sequence of received bits (r1, . . . , rI), we can define the state

sI ∈ NE+1 to be the tuple where the J-th coordinate sI(J) is the size of the set

{m|EI(m) = J}, for J = 0, 1, . . . , E. Note that s0 = (0, 0, . . . , 0,M), as we specified

for the tuple-game.

Given a partition of sI into aI + bI , we can choose a partition of {1, 2, . . . ,M}
into disjoint subsets AI and BI , such that the size of {m ∈ A|EI(m) = J} is exactly

the J coordinate of aI . (For example, we can choose A to contain the smallest aI(J)

of the total sI(J) such messages. The elements of {1, 2, . . . ,M} with EI(m) < 0 can

go into either A or B.)

Our strategy for the tuple-game gives us such a partition of sI into aI+bI . Choose

a set AI , as above; this becomes the question SI+1 for Ulam’s game. If the answer

rI+1 = 1 is received, then EI+1(m) = EI(m) for m ∈ AI and EI+1(m) = EI(m) − 1

8

for m ∈ BI , which implies that sI+1, defined as above, is equal to aI + TbI . While,

if the answer rI+1 = 0 is received, then EI+1(m) = EI(m) − 1 for m ∈ AI and

EI+1(m) = EI(m) for m ∈ BI , which implies that sI+1, defined as above, is equal to

TaI + bI . Thus, regardless of whether Alice answers 0 or 1 in Ulam’s game, the new

state sI+1 corresponds to one of Alice’s possible choices in the tuple-game. So, after N

such questions, if our strategy for the tuple-game is successful, the sum of the elements

of sN will be zero or one, which means that there is at most one m ∈ {1, 2, . . . ,M}
with EN(m) ≥ 0, which means that this was a winning strategy for Ulam’s game.

Second, suppose that we are given a winning strategy for Ulam’s game; we use

this to generate a winning strategy for the tuple-game. We can use the (I + 1)-st

question SI+1(r1, . . . , rI) in Ulam’s game to define a partition of the state sI into

aI + bI , by letting aI(J) be the number of elements m ∈ SI+1 with EI(m) = J .

We can then interpret Alice’s choice of Ta1 + b1 or a1 + Tb1 in the tuple-game as

a choice of rI+1 = 0 or 1 respectively in Ulam’s game, use that new state of Ulam’s

game to determine a new question for Ulam’s game, and so on. If our strategy for

Ulam’s game is successful, then after N questions and answers, we will have at most

one m ∈ {1, 2, . . . ,M} with EN(m) ≥ 0, which implies that the state vector sN will

sum to zero or one, which is the winning condition for the tuple-game.

Following Berlekamp, we will call such an (E + 1)-tuple a state.

Definition 7 (Winning N-state). The state s is a winning N-state if Bob has a

winning strategy for the tuple-game of N rounds with initial state s.

Corollary 1. The following are all equivalent:

• The (E + 1)-tuple (0, 0, . . . , 0,M) is a winning N-state.

• Bob has a winning strategy for Ulam’s game with parameters N , E, M .

• There exists an adaptive block code with parameters N , E, M .

Proof. Immediate from Theorem 1 and Theorem 2.

Lemma 1. If s is a winning N-state, s is also a winning N ′-state for any N ′ > N .

9

Proof. In subsequent rounds of the tuple-game, the sum of the elements of sI is

nonincreasing, because the sum of the elements of Ta is at most the sum of the

elements of a, and the sum of elements of Tb is at most the sum of the elements

of b. So, if Bob has a strategy that forces the sum of the elements of sN to be at

most 1, then Bob can force the sum of the elements of sN ′ to be at most 1, for any

N ′ > N .

1.5 Volume bound

Definition 8 (Partial sum of state). Given a state s = (s0, s1, . . . , sE), we define

s(J) =
E∑

J ′=J

sJ ′ .

We also define s(J) = 0 for J > E.

Lemma 2 (Partial sum representation). The mapping

(s0, s1, . . . , sE)↔ (s(0), s(1), . . . , s(E))

is a one-to-one correspondence between (E + 1)-tuples of nonnegative integers, and

nonincreasing tuples of nonnegative integers.

Proof. If (s0, s1, . . . , sE) is nonnegative, then s(J) is certainly nonnegative, and s(J) =

s(J+1) + sJ , so s(J) ≥ s(J+1). Conversely, if (s(0), s(1), . . . , s(E)) is nonnegative and

nonincreasing, then sE = s(E) is nonnegative, and sJ = s(J) − s(J+1) is nonnegative

for J < E.

Given this lemma, we will use the two representations of a state s interchangeably.

The following terminology will be useful:

Definition 9 (Singlet). A state s with s(0) = 1 is called a singlet.

Definition 10 (Doublet). A state s with s(0) = 2 is called a doublet.

By definition, every singlet is a winning 0-state, and thus a winning N -state for

every N .

10

Lemma 3. If s is a winning N-state and s is not a singlet, then sJ = 0 for J ≥ N .

Proof. Since s is not a singlet, N is greater than 0. Since s is a winning N -state,

s = a+b where Ta+b and a+Tb are winning (N −1)-states. If Ta+b is a singlet,

and a+Tb is a singlet, then aJ = bJ = 0 for all J > 0. But if either Ta+b or a+Tb

is not a singlet, then by induction aJ = bJ = 0 for J ≥ N , so sJ = 0 for J ≥ N .

Following Berlekamp’s terminology, we now define the volume of an N -state:

Definition 11 (Volume).

VolN(s) =
E∑
J=0

sJ

J∑
J ′=0

(
N

J ′

)
=

E∑
J=0

s(J)

(
N

J

)
.

When N is not clear from the context, we will refer to VolN as the N-volume.

Note that throughout this text we take
(
N
J

)
= 0 when N < J or J < 0.

Given this definition, we can easily prove the following lemma and theorem.

Lemma 4 (Conservation of Volume). If s = a + b, then VolN(s) = VolN−1(Ta +

b) + VolN−1(a + Tb).

Proof. Since
(
N
J

)
=
(
N−1
J

)
+
(
N−1
J−1

)
, VolN(s) = VolN−1(s) + VolN−1(Ts) for any state

s. So VolN(s) = VolN(a + b) = VolN(a) + VolN(b) = VolN−1(a) + VolN−1(Ta) +

VolN−1(b) + VolN−1(Tb) = VolN−1(Ta + b) + VolN−1(a + Tb).

Theorem 3 (Volume Bound). If s is a winning N-state, then VolN(s) ≤ 2N .

Proof. If N = 0 then the result is trivial. Otherwise, proceed by induction on N . If

s is a winning N -state, then there exist states a, b such that s = a + b and Ta + b,

a+Tb are winning (N−1)-states. So, by the induction hypothesis, VolN−1(Ta+b) ≤
2N−1 and VolN−1(a + Tb) ≤ 2N−1. But, using conservation of volume, VolN(s) =

VolN−1(Ta + b) + VolN−1(a + Tb) ≤ 2N−1 + 2N−1 = 2N .

1.6 Borderline states

Definition 12 (Borderline winning N-state). A winning N -state s is a borderline

winning N -state if VolN(s) = 2N ; that is, if it satisfies the volume bound with equality.

11

Theorem 4. If s is a borderline winning N-state, and s is not a singlet, then s is

not a winning (N − 1)-state.

Proof. Since VolN(s) = 2N > 0, sJ > 0 for some J . By Lemma 3, sJ > 0 for some

J < N . Thus we compute:

2N = VolN(s) =
E∑
J=0

s(J)

(
N

J

)

=
E∑
J=0

s(J)

(
N − 1

J

)
+

E∑
J=0

s(J)

(
N − 1

J − 1

)

=
E∑
J=0

s(J)

(
N − 1

J

)
+

E−1∑
J=0

s(J+1)

(
N − 1

J

)

=
E∑
J=0

(2s(J) − sJ)

(
N − 1

J

)

= 2 VolN−1(s)−
E∑
J=0

sJ

(
N − 1

J

)
< 2 VolN−1(s)

since the sum on the next to last line is positive. So VolN−1(s) > 2N−1, so s cannot

be a winning (N − 1)-state.

Lemma 5. Given a winning N-state s = (s0, s1, . . . , sE), there is a borderline winning

N-state s′ = (s′0, s1, . . . , sE) which differs from s only in the 0th coordinate.

Proof. When N = 0 this is clear, because a winning 0-state is either a singlet, in

which case it already meets the volume bound with equality, or is zero, in which case

s′ = (1) satisfies the conclusion.

Otherwise, proceed by induction on N . Given a winning N -state s, there is a

partition s = a + b such that c = Ta + b and d = a + Tb are winning (N − 1)-

states. By the induction hypothesis, there are borderline winning (N − 1)-states c′,

d′ which differ from c, d respectively only in the 0th coordinate. Let b′ = c′ − Ta,

a′ = d′−Tb, and s′ = a′+ b′. Then s′− s = (a′−a) + (b′−b) = (c′− c) + (d′−d),

so s′ differs from s only in the 0th coordinate.

12

But c′, d′ are borderline winning (N − 1)-states, so VolN−1(c′) = VolN−1(d′) =

2N−1. By conservation of volume, VolN(s′) = VolN−1(c′) + VolN−1(d′) = 2N−1 +

2N−1 = 2N . So s′ is a borderline winning N -state.

1.7 Doublets

Theorem 5 (Doublet theorem). If s is a doublet, and

s = (0, 0, . . . , 0, 1, 0, . . . , 0) + (0, 0, . . . , 0, 1, 0, . . . , 0),

where the 1’s occur in positions J and K, then s is a borderline winning (J +K+ 1)-

state, and not a winning (J +K)-state.

Proof. By induction. Write s = a + b, where a and b are singlets with aJ = bK = 1.

Then each of Ta + b and a + Tb is either a singlet, or is a doublet that by induction

is a winning (J +K)-state. So s is a winning (J +K + 1)-state.

Let N = J +K + 1. Then

VolN(s) =
J∑

J ′=0

(
N

J ′

)
+

K∑
J ′=0

(
N

J ′

)

=
J∑

J ′=0

(
N

J ′

)
+

K∑
J ′=0

(
N

N − J ′

)

=
J∑

J ′=0

(
N

J ′

)
+

N∑
J ′=N−K

(
N

J ′

)

=
N∑

J ′=0

(
N

J ′

)
= 2N ,

so s is a borderline winning (J +K + 1)-state.

1.8 Zero-error states

The following result corresponds to the trivial strategy for the game of “Twenty

Questions”.

13

Theorem 6 (Twenty questions). If E = 0, so s = (s0), then s is a winning

N-state if and only if s0 ≤ 2N .

Proof. VolN(s) = s0, so “only if” follows from the volume bound. For the “if”

direction, if N = 0, then s = (1) or s = (0) which are winning 0-states. If N > 0,

then we can write s = a+b where a = (a0), b = (b0), and a0, b0 ≤ 2N−1. So Ta+b = b

and a + Tb = a, and by induction both a and b are winning (N − 1)-states, so s is

a winning N -state.

1.9 Dominated states

Definition 13 (Domination). We say that t dominates s if (and only if)

s(J) ≤ t(J) for all J = 0, 1, . . . , E.

We will use the notation t ≥ s for this relation.

Theorem 7 (Domination theorem). If t dominates s, and t is a winning N-state,

then s is a winning N-state.

Proof. By induction on N . The statement is trivial when N = 0. Otherwise, since t

is a winning N -state, t = c+d, where Tc+d and c+Td are winning (N−1)-states.

And s(J) ≤ t(J) = c(J) + d(J) for each J . If we find a, b such that s = a + b, a ≤ c,

and b ≤ d, then we are done, because Ta + b ≤ Tc + d and a + Tb ≤ c + Td, so

Ta + b and a + Tb are winning (N − 1)-states by induction.

The tuples (a(0), . . . , a(E)) and (b(0), . . . , b(E)) must satisfy s(J) = a(J) + b(J) for

each J , and the constraint that a(J) ≥ a(J+1) and b(J) ≥ b(J+1) for each J . We will

construct such a state a, and the corresponding state b, by choosing a(E), then a(E−1),

and so on.

For each J = 0, 1, . . . , E, we need to choose a(J), and b(J) = s(J) − a(J), such that

14

all of the following inequalities are simultaneously satisfied:

a(J+1) ≤ a(J) ⇐⇒ a(J) ≥ a(J+1)

b(J+1) ≤ b(J) ⇐⇒ a(J) ≤ s(J) − b(J+1)

a(J) ≤ c(J) ⇐⇒ a(J) ≤ c(J)

b(J) ≤ d(J) ⇐⇒ a(J) ≥ s(J) − d(J).

(Recall that a(E+1) = b(E+1) = 0 by definition.)

Once a valid choice of a(J+1) has been made, there exists at least one value for

a(J) that simultaneously satisfies all of these inequalities, because:

a(J+1) + b(J+1) = s(J+1) ≤ s(J) =⇒ a(J+1) ≤ s(J) − b(J+1)

a(J+1) ≤ c(J+1) ≤ c(J) =⇒ a(J+1) ≤ c(J)

b(J+1) ≤ d(J+1) ≤ d(J) =⇒ s(J) − d(J) ≤ s(J) − b(J+1)

s(J) ≤ t(J) = c(J) + d(J) =⇒ s(J) − d(J) ≤ c(J).

So the sequence of choices is always possible, so such an a, b exist.

1.10 Translation bound

Berlekamp discovered the following important result.

Theorem 8 (Translation bound). If s is a winning N-state with N ≥ 3, and

s(0) ≥ 3, then Ts is a winning (N − 3)-state.

Proof. When N = 3, then any counterexample must have s(1) ≥ 2; otherwise Ts

would be a winning 0-state. But, together with the hypothesis, this implies that

Vol3(s) ≥ 3
(

3
0

)
+ 2
(

3
1

)
= 3 · 1 + 2 · 3 = 9, which contradicts the volume bound, so s

cannot be a winning 3-state.

If N > 3, proceed by induction. Write s = a + b, where Ta + b and a + Tb are

winning (N − 1)-states. If a(1) + b(0) ≥ 3 and a(0) + b(1) ≥ 3, then by the induction

hypothesis TTa + Tb and Ta + TTb are winning (N − 4)-states, so the partition

Ts = Ta + Tb implies that Ts is a winning (N − 3)-state.

15

Otherwise, without loss of generality assume that a(0) + b(1) ≤ 2. Then s(1) =

a(1) + b(1) ≤ a(0) + b(1) ≤ 2. If s(1) = 1, then Ts is a winning 0-state, so trivially a

winning (N − 3)-state. If s(1) = 2, let s′ be the state equal to s except that s′0 = 0.

Then s′ is a winning N -state, since s′ ≤ s. But s′ is a doublet, so it is either a

borderline winning N -state, or it is a winning (N − 1)-state. If s′ is a borderline

winning N -state, then 2N = VolN(s′) ≤ VolN(s) ≤ 2N , so VolN(s) = VolN(s′), so

s0 = 0, so s is a doublet, contradicting the hypothesis. On the other hand, if s′ is

a winning (N − 1)-state, then Ts′ is a winning (N − 3)-state, by the formula for

doublets, and Ts = Ts′, proving the desired result.

1.11 Infinite state sequences

Definition 14 (State sequence). A state sequence is an infinite sequence of states

s0, s1, s2, . . . , such that Tsi+1 = si for each i ≥ 0.

If the translation bound of the previous section applies to s1 (i.e., s1 is not a singlet

or doublet), then it also applies to all of the subsequent states of the sequence. Then,

if s0 is a winning N -state but not a winning (N − 1)-state, the translation bound

implies that s1 may be a winning (N + 3)-state but cannot be a winning (N + 2)-

state. And, in general, sn may be a winning (N + 3n)-state but cannot be a winning

(N + 3n− 1)-state.

We will be particularly interested in state sequences which achieve this bound:

Definition 15 (Winning N-state sequence). A state sequence is a winning N-

state sequence if sn is a winning (N + 3n)-state, for every n.

Definition 16 (Borderline winning N-state sequence). A winning N -state se-

quence is a borderline winning N-state sequence if sn is a borderline winning (N+3n)-

state, for every n.

16

We can write a winning N -state sequence in the following compact form. Let

s0 = (s0, s1, . . . , sE)

s1 = (s−1, s0, s1, . . . , sE)

s2 = (s−2, s−1, s0, s1, . . . , sE)

and so on. Then we can write the entire state sequence as the infinite tuple

s = (. . . , s−n, s1−n, . . . , s−1; s0, s1, . . . , sE).

(The semicolon indicates the first state in the state sequence.)

Definition 17 (Partial sums for state sequences). Given an infinite state se-

quence

s = (. . . , s−n, s1−n, . . . , s−1; s0, s1, . . . , sE),

we define

s(J) =
E∑

J ′=J

sJ ′ .

Definition 18 (Domination for state sequences). If s and t are infinite state

sequences, we say that t dominates s if (and only if)

s(J) ≤ t(J) for all J.

We will use the notation t ≥ s for this relation.

Corollary 2 (Domination theorem for state sequences). If t dominates s, and

t is a winning N-state sequence, then s is a winning N-state sequence.

Proof. Apply the domination theorem for states to sJ and tJ , for every J .

1.12 Fibonacci states

To use Corollary 2 to prove that a given state sequence is a winning N -state

sequence, we need to have some winning N -state sequences to compare the given

17

sequence to. Fortunately, Berlekamp discovered such sequences: in fact, the sequences

he discovered are borderline winning N -state sequences.

A borderline winning N -state sequence is obviously highly constrained. If s0 is

given, and is a borderline winning N -state, and we want s1 to be a borderline winning

(N + 3)-state, then the value of s−1 is determined by the volume formula. We want

to have VolN+3(s1) = 2N+3, so we must have

s−1 = 2N+3 −
E∑
J=0

sJ

J+1∑
J ′=0

(
N + 3

J ′

)
.

If this formula gives a negative value for s−1, then there is no borderline winning

N -state sequence (indeed, no winning N -state sequence at all) beginning with s0. If

the formula gives a nonnegative value for s−1, then we can determine

s−2 = 2N+6 −
E∑

J=−1

sJ

J+2∑
J ′=0

(
N + 6

J ′

)

s−3 = 2N+9 −
E∑

J=−2

sJ

J+3∑
J ′=0

(
N + 9

J ′

)
and so on. Only if sJ turns out to be nonnegative for every J is there a unique

borderline winning N -state sequence beginning with s0.

Berlekamp noticed that for certain starting states, the entire state sequence can

be stated in closed form in terms of Fibonacci numbers. This makes it easy to see

that the values are all nonnegative, so the state sequence exists. For example, the

starting state (4, 1), which is a borderline winning 3-state, leads to the borderline

winning 3-state sequence (. . . , 4414, 1042, 246, 58, 14; 4, 1).

We will call such a sequence a Fibonacci state sequence, and any state in such a se-

18

quence a Fibonacci state. Here are some more examples of Fibonacci state sequences:

(. . . , 7072, 1744, 352, 128, 0; 16) (N = 4)

(. . . , 4408, 1048, 240, 64, 8; 8) (N = 3)

(. . . , 2728, 644, 152, 36, 8; 4) (N = 2)

(. . . , 1686, 398, 94, 22, 6; 2) (N = 1)

(. . . , 4414, 1042, 246, 58, 14; 4, 1) (N = 3)

(. . . , 2728, 644, 152, 36, 10; 1, 1) (N = 2)

(. . . , 7142, 1686, 398, 94, 24; 5, 0, 1) (N = 4)

(. . . , 4414, 1042, 246, 60, 15; 1, 0, 1) (N = 3)

(. . . , 11556, 2728, 644, 154, 39; 6, 0, 0, 1) (N = 5)

(. . . , 7142, 1686, 400, 99, 21; 1, 0, 0, 1) (N = 4)

(. . . , 18698, 4414, 1044, 253, 60; 7, 0, 0, 0, 1) (N = 6)

(. . . , 11556, 2730, 653, 159, 28; 1, 0, 0, 0, 1) (N = 5)

(. . . , 30254, 7144, 1697, 412, 88; 8, 0, 0, 0, 0, 1) (N = 7)

(. . . , 18700, 4427, 1065, 247, 36; 1, 0, 0, 0, 0, 1) (N = 6)

(. . . , 48954, 11571, 2762, 659, 124; 9, 0, 0, 0, 0, 0, 1) (N = 8)

(. . . , 30271, 7189, 1724, 371, 45; 1, 0, 0, 0, 0, 0, 1). (N = 7)

Theorem 9 (Fibonacci state sequences). There exist (unique) borderline winning

N-state sequences, as follows:

• With E = 0 and 1 ≤ N ≤ 4, where the borderline winning N-state is just (2N).

• With E ≥ 1 and N = E+ 1, where the borderline winning N-state has the form

(s0 = 1, 0, 0, . . . , 0, sE = 1).

• With E ≥ 1 and N = E+ 2, where the borderline winning N-state has the form

(s0 = N + 1, 0, 0, . . . , 0, sE = 1).

19

Chapter 2

Computational methods

2.1 Summation rule for states

Suppose that c and d are winning (N − 1)-states. For which states s does this

information suffice to show that s is a winning N -state?

If we can construct a, b such that s = a + b, Ta + b ≤ c, and a + Tb ≤ d, then

we can conclude that s is a winning N -state.

Theorem 10 (Summation theorem for states). Given states s, c, d, the follow-

ing are necessary and sufficient conditions for the existence of states a, b such that

s = a + b, Ta + b ≤ c, and a + Tb ≤ d:

s(J+1) ≤ c(J)

s(J+1) ≤ d(J)

s(J) + s(J+1) ≤ c(J) + d(J),

for all J = 0, 1, . . . , E. (Note that s(E+1) is zero by definition.)

Proof. The conditions are clearly necessary, since:

Ta + b ≤ c =⇒ s(J+1) = a(J+1) + b(J+1) ≤ a(J+1) + b(J) ≤ c(J)

a + Tb ≤ d =⇒ s(J+1) = a(J+1) + b(J+1) ≤ a(J) + b(J+1) ≤ d(J)

Ta + b + a + Tb ≤ c + d =⇒ s(J) + s(J+1) = a(J) + b(J) + a(J+1) + b(J+1) ≤ c(J) + d(J).

20

To show the conditions are sufficient, for each J , we need to find a(J), and b(J) =

s(J) − a(J), such that all of the following inequalities are simultaneously satisfied:

a(J+1) ≤ a(J) ⇐⇒ a(J) ≥ a(J+1)

b(J+1) ≤ b(J) ⇐⇒ a(J) ≤ s(J) − b(J+1)

a(J+1) + b(J) ≤ c(J) ⇐⇒ a(J) ≥ a(J+1) + s(J) − c(J)

a(J) + b(J+1) ≤ d(J) ⇐⇒ a(J) ≤ d(J) − b(J+1).

(Recall that a(E+1) = b(E+1) = 0 by definition.)

Once a valid choice of a(J+1) has been made, there exists at least one value for

a(J) that simultaneously satisfies all of these inequalities, because:

a(J+1) ≤ s(J) − b(J+1) ⇐⇒ s(J+1) ≤ s(J)

a(J+1) ≤ d(J) − b(J+1) ⇐⇒ s(J+1) ≤ d(J)

a(J+1) + s(J) − c(J) ≤ s(J) − b(J+1) ⇐⇒ s(J+1) ≤ c(J)

a(J+1) + s(J) − c(J) ≤ d(J) − b(J+1) ⇐⇒ s(J) + s(J+1) ≤ c(J) + d(J).

The first follows from the definition of s(J), and the next three are the hypotheses

of the theorem.

Definition 19 (Summation for states). If c, d are states, we will write c⊕ d for

the set of states s that satisfy the inequalities:

s(J+1) ≤ c(J)

s(J+1) ≤ d(J)

s(J) + s(J+1) ≤ c(J) + d(J),

for J = 0, 1, . . . , E.

Note that if s = a + b, then s ∈ (Ta + b)⊕ (a + Tb). But c⊕ d is well-defined

even if there is no pair of states a, b such that c = Ta + b and d = a + Tb, as will

often be the case.

Corollary 3. If c, d are winning (N − 1)-states, and s ∈ c⊕ d, then s is a winning

N-state.

Corollary 4. If s = a + b, Ta + b ≤ c, and a + Tb ≤ d, then s ∈ c⊕ d.

21

2.2 Summation rule for state sequences

Theorem 11 (Summation theorem for state sequences). Given state sequences

s, c, d, the following are necessary and sufficient conditions for the existence of state

sequences a, b such that s = a + b, Ta + b ≤ c, and a + Tb ≤ d:

s(J+1) ≤ c(J)

s(J+1) ≤ d(J)

s(J) + s(J+1) ≤ c(J) + d(J),

for all J ≤ E. (Note that s(E+1) is zero by definition.)

Proof. The proof is exactly the same as for Theorem 10, but now we consider all

values of J ≤ E, instead of just J = 0, 1, . . . , E.

Definition 20 (Summation for state sequences). If c, d are state sequences, we

will write c⊕ d for the set of state sequences s that satisfy the inequalities:

s(J+1) ≤ c(J)

s(J+1) ≤ d(J)

s(J) + s(J+1) ≤ c(J) + d(J),

for all J ≤ E.

Corollary 5. If c, d are winning (N − 1)-state sequences, and s ∈ c ⊕ d, then s is

a winning N-state sequence.

2.3 Game trees for states

One of our goals is to prove that certain states are winning N -states. Each such

state will demonstrate the existence of an optimal adaptive block code for a particular

choice of code parameters.

To do this, we will construct game trees. We know that we can prove that a state

s is a winning N -state by writing s = a + b and proving that Ta + b and a + Tb are

22

winning (N − 1)-states. Or, more generally, we can use Corollary 3. In this case, we

need to exhibit c, d which are winning (N − 1)-states, such that s ∈ c⊕ d.

In order to show that any state is a winning state this way, we have to have some

winning states to start with. We have four sorts of states that we have previously

shown to be winningN -states for appropriate choices ofN : singlets (Section 1.5), dou-

blets (Theorem 5), zero-error states (Theorem 6), and Fibonacci states (Section 1.12).

Given two such winning N -states, we can then show that some other states are win-

ning (N + 1)-states by using Corollary 3. Given two winning (N + 1)-states, we can

show that another state is a winning (N + 2)-state, and so on.

We will represent this process of inference by a binary tree. If we check that each

leaf is provably a winning N -state for the value of N at that leaf, and that each

non-leaf satisfies Definition 19 with respect to its children, then we have a proof that

the root of the tree is a winning N -state.

Definition 21 (Game tree of states). A game tree of states is a finite binary tree

in which each node contains a state s and an integer N ≥ 0. At each leaf, (s, N),

s is provably a winning N -state: either a singlet, or a doublet (Theorem 5), or a

zero-error state (Theorem 6), or a Fibonacci state (Theorem 9). Each non-leaf node,

(s, N), has precisely two children, (c, N − 1) and (d, N − 1), such that s ∈ c⊕ d.

Theorem 12 (Game tree theorem for states). For every node (s, N) in a valid

game tree of states, s is a winning N-state.

Proof. At each leaf, s is provably a winning N -state, by the definition of the game

tree. At each other node, Corollary 3 shows that the theorem holds at that node

given that it holds at each child node. By induction on the tree, the theorem holds

at every node.

In practice, many of the nodes with the same value N may contain the same state.

In that case, we can collapse the tree so that we have only a single node with that

state and value, and it is the child of several different parent nodes. It may also be

the case that both children of a given node are equal, and again we can make them

the same node. In this manner, we can greatly reduce the number of distinct nodes

required to represent a proof that a given state is a winning N -state.

23

2.4 Game trees for state sequences

Another goal is to prove that certain infinite state sequences are winning N -

state sequences. Each such state sequence will demonstrate the existence of optimal

adaptive block codes for an infinite collection of parameter choices.

In order to show that any state sequence is a winning state sequence, we have to

have some winning state sequences to start with. For this purpose we will rely on the

Fibonacci state sequences of Theorem 9. Given two such winning N -state sequences,

we can then show that some other state sequences are winning (N+1)-state sequences

by using Corollary 5. Given two winning (N + 1)-state sequences, we can show that

another state is a winning (N + 2)-state sequence, and so on.

We can also represent this process of inference by a binary tree. If we check that

each leaf is provably a winning N -state sequence for the value of N at that leaf, and

that each non-leaf satisfies Definition 20 with respect to its children, then we have a

proof that the root of the tree is a winning N -state sequence.

Definition 22 (Game tree of state sequences). A game tree of state sequences

is a finite binary tree in which each node contains a state sequence s and an integer

N . At each leaf, (s, N), s satisfies the criteria of Section 1.12. Each non-leaf node,

(s, N), has precisely two children, (c, N − 1) and (d, N − 1), such that s ∈ c⊕ d.

Theorem 13 (Game tree theorem for state sequences). For every node (s, N)

in a valid game tree of state sequences, s is a winning N-state sequence.

Proof. At each leaf, s is provably a winning N -state sequence, by the definition of

the game tree. At each other node, Corollary 5 shows that the theorem holds at that

node given that it holds at each child node. By induction on the tree, the theorem

holds at every node.

In practice, many of the nodes with the same value N may contain the same

state sequence. In that case, we can collapse the tree so that we have only a single

node with that state sequence and value, and it is the child of several different parent

nodes. It may also be the case that both children of a given node are equal, and

24

again we can make them the same node. In this manner, we can greatly reduce the

number of distinct nodes required to represent a proof that a given state sequence is

a winning N -state sequence.

2.5 Truncated state sequences

There is a practical problem with constructing game trees for state sequences:

each node is supposed to contain an infinite state sequence, which would require

infinite storage.

Fortunately, in some cases we can truncate the state sequences in a given game

tree and still prove that the root node is a winning N -state sequence. Suppose

that we have a state sequence with only finitely many nonzero coefficients: s =

(. . . , 0, 0, 0; s0, s1, . . . , sE). Suppose further that we have a game tree in the sense of

Section 2.3 which proves that the state s0 = (s0, s1, . . . , sE) is a winning N -state.

Then, under certain additional conditions, we can conclude from that tree that s is a

winning N -state sequence.

Theorem 14 (Truncated game tree theorem). Consider a game tree of states,

with root (s0, N), where s0 = (s0, s1, . . . , sE) and M = s(0). Suppose that each node,

(t0, N
′) contains a winning N ′-state t0. And suppose that each leaf, (t0, N

′), contains

a winning N ′-state t0 that can be extended to a winning N ′-state sequence t such that

t(−1) ≥M . Then s = (. . . , 0, 0, 0; s0, s1, . . . , sE) is a winning N-state sequence.

Proof. From the given game tree of states, construct a game tree of state sequences

as follows. Replace each node (t0, N
′), containing a state t0, with a node (t, N),

containing a state sequence t, such that:

t(J) =

min(t0
(J),M) if J ≥ 0,

M if J < 0,

The root of the new tree is (s, N), by construction. At each leaf node (t, N ′),

the constructed state sequence t is dominated by the state sequence provided in the

hypothesis of the theorem, so is a winning N ′-state sequence.

25

It remains to show that Definition 20 holds at each node that is not a leaf. Consider

such a node, (t, N ′), with children (c, N ′ − 1), (d, N ′ − 1). The given game tree of

states had corresponding nodes (t0, N
′), (c0, N

′ − 1), (d0, N
′ − 1), with t0 ∈ c0 ⊕ d0.

From Definition 19, we know that:

t0
(J+1) ≤ c0

(J)

t0
(J+1) ≤ d0

(J)

t0
(J) + t0

(J+1) ≤ c0
(J) + d0

(J),

for J = 0, 1, . . . , E.

For J ≤ −1:

t(J+1) ≤M = c(J)

t(J+1) ≤M = d0
(J)

t(J) + t(J+1) ≤ 2M = c0
(J) + d0

(J).

For J ≥ 0:

t(J+1) = min(t0
(J+1),M) ≤ min(c0

(J),M) = c(J)

t(J+1) = min(t0
(J+1),M) ≤ min(d0

(J),M) = d(J)

t(J) + t(J+1) = min(t0
(J),M) + min(t0

(J+1),M) ≤ min(c0
(J),M) + min(d0

(J),M) = c(J) + d(J).

Thus all the conditions of Definition 20 are satisfied, so t ∈ c⊕ d.

Since this holds at every non-leaf node, and every leaf node contains a winning

N ′-state sequence, the constructed game tree is a valid game tree of state sequences,

so s is a winning N -state sequence.

2.6 Losing states

We have previously stated two criteria by which to show that an N -state is a

losing N -state (i.e., not a winning N -state). One is the volume bound of Section 1.5,

and the other is the translation bound of Section 1.10. For our characterization of

optimal adaptive block codes, we need some additional results to show that certain

N -states are losing N -states.

26

Theorem 15 (First step). If s = (0, 0, . . . , 0, 0, sE) is a winning N-state, with

E > 0, then t = (0, 0, . . . , 0, bsE/2c, dsE/2e) is a winning (N − 1)-state. If sE is odd,

then VolN(s) ≤ 2N −
(
N−1
E

)
.

Proof. Suppose that s = a + b where c = Ta + b and d = a + Tb are winning

(N − 1)-states. Then sE = aE + bE, so either aE ≥ dsE/2e or bE ≥ dsE/2e. Since

c(E) = bE, d(E) = aE, and c(J) = d(J) = sE for J < E, either t ≤ c or t ≤ d. In either

case, t is a winning (N − 1)-state.

If E is odd, then

t = (0, 0, . . . , 0, (sE − 1)/2, (sE + 1)/2)

is a winning (N − 1)-state, so:

VolN−1(t) =
sE − 1

2

E−1∑
J=0

(
N − 1

E

)
+
sE + 1

2

E−1∑
J=0

(
N − 1

J

)

= sE

E−1∑
J=0

(
N − 1

J

)
+
sE + 1

2

(
N − 1

E

)
≤ 2N−1.

Then:

VolN(s) = sE

E∑
J=0

(
N

J

)

= sE

E∑
J=0

(
N − 1

J

)
+ sE

E∑
J=0

(
N − 1

J − 1

)

= 2sE

E−1∑
J=0

(
N − 1

J

)
+ sE

(
N − 1

E

)
= 2 VolN−1(t)−

(
N − 1

E

)
≤ 2 · 2N−1 −

(
N − 1

E

)
.

27

Theorem 16 (Second step). Suppose that s = (0, 0, . . . , 0, 0, sE−1, sE) is a winning

N-state, with E > 1. Let g = gcd
((
N−1
E

)
,
(
N−1
E−1

))
. Write

(
N−1
E

)
= kg and

(
N−1
E−1

)
= `g.

Suppose that sEk + sE−1` is odd. Then VolN(s) ≤ 2N − g.

Proof. Write s = a + b such that Ta + b and a + Tb are winning (N − 1)-states.

By conservation of volume, VolN−1(Ta + b) + VolN−1(a + Tb) = VolN(s). Without

loss of generality, assume VolN−1(a + Tb) ≥ VolN(s)/2. Let δE = 2aE − sE and

δE−1 = 2aE−1 − sE−1. Then:

a + Tb = (0, 0, . . . , 0, (sE−1 − δE−1)/2, (sE + sE−1 − δE + δE−1)/2, (sE + δE)/2),

so

VolN−1(a + Tb) = sE−1

E−2∑
J=0

(
N − 1

J

)
+
sE−1 + δE−1

2

(
N − 1

E − 1

)

+ sE

E−1∑
J=0

(
N − 1

J

)
+
sE + δE

2

(
N − 1

E

)
.

Then:

VolN(s) = sE−1

E−1∑
J=0

(
N

J

)
+ sE

E∑
J=0

(
N

J

)

= 2sE−1

E−2∑
J=0

(
N − 1

J

)
+ sE−1

(
N − 1

E − 1

)
+ 2sE

E−1∑
J=0

(
N − 1

J

)
+ sE

(
N − 1

E

)
= 2 VolN−1(a + Tb)− δE−1

(
N − 1

E − 1

)
− δE

(
N − 1

E

)
= 2 VolN−1(a + Tb)− g(δEk + δE−1`).

But δE ≡ sE (mod 2) and δE−1 ≡ sE−1 (mod 2), so

δEk + δE−1` ≡ sEk + sE−1` ≡ 1 (mod 2),

so δEk + δE−1` is not zero. Since VolN−1(a + Tb) ≥ VolN(s)/2, δEk + δE−1` must be

a positive integer, so VolN(s) ≤ 2 VolN−1(a + Tb)− g ≤ 2N − g.

28

2.7 A three-step losing state

We want to demonstrate one more losing state, not covered by Theorem 15 or

Theorem 16 of the previous section. Rather than generalize to other states, we will

consider only the specific result we need. Of course, a generalization of this calculation

would be possible.

Theorem 17 (Three-step theorem). The 37-state

s = (0, 0, 0, 0, 0, 0, 48475)

is a losing 37-state.

Proof. Assume that s is a winning 37-state. Then, by Theorem 15,

t = (0, 0, 0, 0, 0, 24237, 24238)

Vol36(t) = 68719133896

is a winning 36-state. So there exist a, b such that t = a + b and Ta + b, a + Tb

are winning 35-states. Choose δ5, δ6 such that:

a = (0, 0, 0, 0, 0, (24237− δ5)/2, (24238− δ6)/2)

b = (0, 0, 0, 0, 0, (24237 + δ5)/2, (24238 + δ6)/2).

Since Vol36(t) = Vol35(Ta + b) + Vol35(a + Tb), assume without loss of generality

that Vol35(Ta + b) ≥ Vol36(t)/2. So

u = Ta + b = (0, 0, 0, 0, (24237− δ5)/2, (48475− δ6 + δ5)/2, (24238 + δ6)/2)

Vol35(u) = 34359566948 + 162316δ5 + 811580δ6

= 34359566948 + 162316(δ5 + 5δ6)

is a winning 35-state. But in order for the elements of a to be integers, δ5 must be odd

and δ6 must be even, so δ5 + 5δ6 is odd, and positive since Vol35(u) ≥ Vol36(t)/2 =

34359566948.

29

But if δ5 + 5δ6 ≥ 3, then

Vol35(u) ≥ 34359566948 + 3 · 162316 = 34360053896 > 235.

So δ5 + 5δ6 = 1, so δ5 = 1− 5δ6, so

u = (0, 0, 0, 0, (24236 + 5δ6)/2, (48476− 6δ6)/2, (24238 + δ6)/2)

Vol35(u) = 34359566948 + 162316 = 34359729264

is a winning 35-state. So there exist c, d such that u = c + d and Tc + d, c + Td

are winning 34-states. Choose ε4, ε5, ε6 such that:

c = (0, 0, 0, 0, (24236 + 5δ6 − ε4)/4, (48476− 6δ6 − ε5)/4, (24238 + δ6 − ε6)/4)

d = (0, 0, 0, 0, (24236 + 5δ6 + ε4)/4, (48476− 6δ6 + ε5)/4, (24238 + δ6 + ε6)/4).

Since Vol35(u) = Vol34(Tc + d) + Vol34(c + Td), assume without loss of generality

that Vol34(Tc + d) ≥ Vol35(u)/2. So

v = Tc + d = (0, 0, 0, (24236 + 5δ6 − ε4)/4, (72712− δ6 − ε5 + ε4)/4,

(72714− 5δ6 − ε6 + ε5)/4, (24238 + δ6 + ε6)/4)

Vol34(v) = 17179864632 + 11594ε4 + 69564ε5 + 336226ε6

= 17179864632 + 11594(ε4 + 6ε5 + 29ε6).

is a winning 34-state. But in order for the elements of c to be integers,

ε4 ≡ 24236 + 5δ6 ≡ δ6 (mod 4)

ε5 ≡ 48476− 6δ6 ≡ 2δ6 (mod 4)

ε6 ≡ 24238 + δ6 ≡ 2 + δ6 (mod 4)

ε4 + 6ε5 + 29ε6 ≡ ε4 + 2ε5 + ε6 ≡ 2 + 2δ6 ≡ 2 (mod 4).

But ε4 + 6ε5 + 29ε6 cannot be negative, since Vol34(v) ≥ Vol35(u)/2 = 17179864632,

so ε4 + 6ε5 + 29ε6 is at least 2, so

Vol34(v) ≥ 17179864632 + 2 · 11594 = 17179887820 > 234.

So v cannot be a winning 34-state.

Corollary 6. There is no adaptive block code with N = 37, E = 5, and M = 48475.

30

Chapter 3

Optimal codes

3.1 Main Result

When M = 1 or M = 2, determining when an adaptive error-correcting code

exists is trivial; see Sections 1.5 and 1.7. (When M = 1, the code always exists. When

M = 2, the code exists iff N ≥ 2E + 1.) Our main result is to completely determine

necessary and sufficient conditions for the existence of adaptive error-correcting codes,

for all values of M up to 220.

Definition 23 (Optimal code). An optimal adaptive error-correcting code has pa-

rameters N , E, M such that there exists no adaptive error-correcting code with the

same value of N and E and a larger value of M .

Theorem 18 (Optimal codes). The optimal adaptive error-correcting codes with

3 ≤M ≤ 220 are precisely those shown in Table 3.1.

Corollary 7 (Main result). If 3 ≤ M ≤ 220, there exists an adaptive block code

with parameters N , E, M if and only if M is less than or equal to the value indexed

by N and E in Table 3.1, or if N is greater than the largest value indexed for E in

Table 3.1.

The proof combines the techniques of Chapter 2 with a large computation, to

construct search trees demonstrating the existence of the codes in Table 3.1. The fact

31

N E = 0 E = 1 E = 2 E = 3 E = 4 E = 5 E = 6 E = 7 E = 8 E = 9 E ≥ 10
3E + 2 4 4 4 4 4 4 4 4 4 4 4
3E + 3 8 8 8 8 8 8 8 8 8 8 8
3E + 4 16 16 16 16 16 16 16 16 16 16 16
3E + 5 32 28 28 28 28 28 28 28 28 28 28
3E + 6 64 50 50 50 50 50 50 50 50 50 50
3E + 7 128 92 88 88 88 88 88 88 88 88 88
3E + 8 256 170 154 154 154 154 154 154 154 154 154
3E + 9 512 314 270 264 264 264 264 264 264 264 264
3E + 10 1024 584 478 451 451 451 451 451 451 451 451
3E + 11 2048 1092 850 776 768 768 768 768 768 768 768
3E + 12 4096 2048 1524 1342 1294 1294 1294 1294 1294 1294 1294
3E + 13 8192 3854 2744 2337 2196 2192 2192 2192 2192 2192 2192
3E + 14 16384 7280 4968 4096 3748 3662 3662 3662 3662 3662 3662
3E + 15 32768 13796 9038 7216 6436 6154 6154 6154 6154 6154 6154
3E + 16 65536 26214 16512 12776 11110 10406 10249 10249 10249 10249 10249
3E + 17 131072 49932 30282 22732 19282 17686 17116 17116 17116 17116 17116
3E + 18 262144 95324 55738 40622 33626 30216 28734 28467 28467 28467 28467
3E + 19 524288 182360 102926 72884 58904 51868 48474 47306 47306 47306 47306
3E + 20 1048576 349524 190650 131264 103620 89438 82160 78986 78589 78589 78589
3E + 21 671088 354136 237238 183005 154876 139866 132474 130088 130088 130088
3E + 22 659546 430184 324416 269268 239102 223138 216269 215900 215900
3E + 23 782468 577124 469928 410374 377388 361034 356245 356245
3E + 24 1030090 823076 706994 640756 605094 590174 590174
3E + 25 1017990 981464 972164

Table 3.1: Optimal Adaptive Codes with M ≤ 220

that each code is optimal (i.e., the nonexistence of adaptive codes with larger values

of M) in each case follows from the results in Chapter 2.

3.2 Upper bounds on M

In order to show that each value in Table 3.1 is optimal, we need to show that

increasing M by 1 makes it impossible to construct an adaptive error-correcting code.

In each case, the result follows from results in Chapter 2. The symbols in Table 3.2

show which theorem applies in each case:

V: Theorem 3 (Volume bound)

1: Theorem 15 (First step)

2: Theorem 16 (Second step)

3: Theorem 17 (Third step)

32

T: Theorem 8 (Translation bound)

N E = 0 E = 1 E = 2 E = 3 E = 4 E = 5 E = 6 E = 7 E = 8 E = 9 E ≥ 10
3E + 2 V T T T T T T T T T T
3E + 3 V T T T T T T T T T T
3E + 4 V T T T T T T T T T T
3E + 5 V V T T T T T T T T T
3E + 6 V 1 T T T T T T T T T
3E + 7 V 1 1 T T T T T T T T
3E + 8 V V V T T T T T T T T
3E + 9 V 1 V 1 T T T T T T T
3E + 10 V 1 V V T T T T T T T
3E + 11 V V 1 V 1 T T T T T T
3E + 12 V V V V 1 T T T T T T
3E + 13 V 1 V V V V T T T T T
3E + 14 V 1 1 V V V T T T T T
3E + 15 V 1 1 V V 1 T T T T T
3E + 16 V V 1 2 1 1 V T T T T
3E + 17 V V 1 1 1 1 1 T T T T
3E + 18 V 1 V V V 1 V V T T T
3E + 19 V 1 1 1 V 1 3 1 T T T
3E + 20 V 1 V V V 1 V V V T T
3E + 21 V V V V V 1 V V T T
3E + 22 V 1 2 V 1 V V V T
3E + 23 V 1 V V V 1 V T
3E + 24 1 V V V V V T
3E + 25 1 1 VT

Table 3.2: Derivation of Upper Bounds

Note that when E = 10 and N = 55, the result follows from the Volume bound;

when E > 10 and N = 3E + 25, the result follows from the Translation bound.

When N < 3E + 2, no adaptive error-correcting code can have M > 2. If E = 0

and N = 1, M = 3 would violate the translation bound. If E > 0 and N = 3E + 1,

then M = 3 would violate the volume bound. If N < 3E + 1, then M = 3 would

violate Lemma 1.

To prove Theorem 18, it remains to show that: (1) for each entry in Table 3.1,

an adaptive error-correcting code exists with the specified values of N , E, M ; (2) for

values of N greater than those in Table 3.1, an adaptive error-correcting code exists

with M > 220.

33

3.3 Search algorithm for states

The results of Chapter 2 let us use search trees to demonstrate the existence of

adaptive block codes. In this chapter we will describe the algorithms that allow us to

construct search trees, and thus establish our main results.

Our basic approach is a recursive depth-first search, with memoization, for con-

structing search trees. The goal of the algorithm is to prove that a given N -state is

a winning N -state. (In some cases, we will subsequently extend the analysis to show

that a given N -state sequence is a winning N -state sequence.)

Memoization is a technique in which we record winning N ′-states as we find them,

so that later in the depth-first search, if we visit a state that is dominated by one of

these states, we know that the new state is a winning state without further search.

Algorithm 1 (Depth-first search).

Input: An N -state s.

Output: A proof that s is a winning N -state, or failure.

Start: Initialize an empty table of winning N ′-states, for each N ′ ≤ N .

Procedure:

1. If s is provably a winning N -state (using Theorem 9), find t, a winning N -state

which dominates s; go to step 9.

2. If s is provably a losing state (using Theorem 3, the volume bound, or Theo-

rem 8, the translation bound), return failure.

3. Search the table of winning N -states for a winning N -state t which dominates

s; if found, return t.

4. Choose states a and b such that s = a + b (using Algorithm 2).

5. Apply Algorithm 1 to the (N − 1)-state c = Ta + b. If the algorithm fails, go

to step 8.

34

6. Apply Algorithm 1 to the (N − 1)-state d = a + Tb. If the algorithm fails, go

to step 8.

7. If Algorithm 1 succeeds for c and d, returning c′ and d′ respectively, find

t ∈ c′ ⊕ d′ which dominates s (using Algorithm 4); go to step 9.

8. If Algorithm 1 fails for c or d, repeat step 5 with a different choice of a and b

(using Algorithm 3). If too many choices of a and b have already been tried,

return failure.

9. Store the winning N -state t which dominates s in the table of winning N -states;

return t.

Theorem 19 (Search theorem for states). If Algorithm 1 with input (s, N) re-

turns with success, then s is a winning N-state.

Proof. The winning states found by Algorithm 1 form the game tree in the hypothesis

of Theorem 12. The root of the tree contains (t, N), where t dominates s. The

algorithm does not return with success unless the game tree is complete.

If Algorithm 1 returns failure, that does not imply that the state s cannot be a

winning N -state, because not all possibilities for a,b are tried in step 4. However, in

the cases we shall consider, when Algorithm 1 fails, we shall be able to show that s

is not a winning N -state.

3.4 Partitioning algorithm

One key to Algorithm 1 is making a good choice of a and b in step 4. Of course,

many different choices may work, and any choice that works leads to a correct proof.

Because sometimes our first choice of a and b fails, we also need a method to generate

additional candidates.

Algorithm 2 (Partitioning).

Input: An N -state s.

35

Output: A pair of states a, b such that s = a + b.

Start:

Procedure:

1. First step

2. Second step

3. Third step

Algorithm 3 (Biased partitioning).

Input: An N -state s.

Output: A pair of states a, b such that s = a + b.

Start: Initialize a vector

Procedure:

1. First step

2. Second step

3. Third step

3.5 Summation algorithm

A second key to Algorithm 1 is choosing the state t ∈ c ⊕ d in step 7. Again,

many different choices could work, and any choice that works leads to a correct proof.

In general, we want to choose t as “large” as possible, so that when we store t in our

table of winning N -states, we will be likely to later find other N -states in our search

that are dominated by t.

The method we use, which works well in practice, is to make the lexicographically

largest choice of t. That is, of all of the elements of c⊕d that dominate s, we choose

36

t with tE as large as possible. Among such states, we choose t with tE−1 as large as

possible, and so on.

When applying Algorithm 1 to a root state s with s(0) = M , all of the intermediate

states in the game tree for s can be chosen to have t(0) ≤M . So, for convenience, we

will also require that the state produced by Algorithm 4 has t(0) ≤M . This constraint

has no effect on the success of the program; it simply lets us avoid computing and

storing very large numbers that would otherwise occur.

This algorithm is implemented by the addstate function in Appendix A.

Algorithm 4 (Summation).

Input: An N -state s, (N−1)-states c, d such that s ∈ c⊕d, and an integer M ≥ s(0).

Output: An N -state t such that s ≤ t, t ∈ c ⊕ d, and t(0) ≤ M , and which is

lexicographically largest among all such t.

Start: Let s = (s0, s1, . . . , sE).

Procedure:

1. Let t(E+1) = 0.

2. In turn for J = E, J = E − 1, . . . , J = 0,

let t(J) = min(M, c(J−1), d(J−1), c(J) +d(J)−t(J+1), c(J−1) +d(J−1)−s(J−1), c(J−2) +

d(J−2) − s(J−2)).

3.6 Lifting game trees

If the game tree produced by Algorithm 1 with input (s0, N) satisfies certain

additional conditions, we can conclude not only that s0 = (s0, s1, . . . , sE) is a winning

N -state, but that s = (. . . , 0, 0, 0; s0, s1, . . . , sE) is a winning N -state sequence. The

conditions are given by Theorem 14: for each leaf of the game tree produced by

Algorithm 1, (t0, N
′), it must be possible to extend t0 to a winning N ′-state sequence

t such that t(−1) ≥ s(0).

37

This is a condition that we can check during the execution of Algorithm 1. The

winning states which can be extended to winning state sequences are Fibonacci states

(Section 1.12). So, if each leaf reached in the execution of Algorithm 1 is a Fibonacci

state, with the desired property, then we can assert that s is a winning N -state

sequence.

If all of the leaves are Fibonacci states, but not all have the desired property,

then we can attempt to lift the game tree. Lifting starts at the leaves of the tree and

proceeds toward the root. Lifting of each node assumes that the children of that node

have been lifted.

Algorithm 5 (Lifting).

Input: A game tree with the N -state s0 = (s0, s1, . . . , sE) at the root.

Output: A game tree with the (N + 3)-state s−1 = (0, s0, s1, . . . , sE) at the root, or

failure.

Start: Initialize

Procedure:

1. First step

2. Second step

3. Third step

3.7 Computational Results

Appendix A contains the program which implements Algorithms 1, 2, 3, 4, and 5.

Appendix B contains the output of this program, which takes about 4 minutes to run

on a 600 MHz Pentium III system.

Each line of the output displays the success or failure of Algorithm 1 to find an

optimal adaptive block code, or the success or failure of Algorithm 5 to “lift” a game

tree. When Algorithm 1 succeeds, then there exists an adaptive block code with

38

parameters N , E, M . When Algorithm 5 succeeds, and when all of the leaves of the

lifted game tree are “safe”, then Theorem 14 implies the existence of adaptive block

codes with parameters N + 3k, E + k, M , for all k ≥ 0. Together, these results from

Appendix B imply all of the numeric values in Table 3.1. Note that Algorithm 1 fails,

in the cases in Appendix B, only when one of the results in Table 3.2 demonstrates

that it must fail. This is what lets us conclude that the results in Table 3.1 are

optimal.

Appendix B also contains results which imply that for all values of N larger than

those shown in Table 3.1, there exists an adaptive block code with M > 220 =

1048576. This completes the proof of Theorem 18 and Corollary 7.

39

Appendix A

Program Listing

#include <stdio.h>

#include <malloc.h>

#include <assert.h>

#include <values.h>

#include <math.h>

#define NMAX 126

#define EMAX 32

#define FEXP(n) (pow (2.0, (double) (n)))

typedef struct winstate {

struct winstate *next;

int ns;

struct winstate *left, *right;

int state[EMAX+1];

} winstate;

#define MAX(a,b) ((a) > (b) ? (a) : (b))

#define MIN(a,b) ((a) < (b) ? (a) : (b))

static double bico[128][128], wts[128][128];

static winstate *tree[NMAX+1];

static int mcurrent;

static int leafnodes, safeleaves;

static int treenodes, searchnodes;

40

int treesearch (int e, int n, int m);

int lifttree (int e, int n, int m);

winstate *depthsearch (int state[], int ns, int n);

void inittree (void);

winstate *addtree (int state[], int ns, int n,

winstate *left, winstate *right);

winstate *memotest (int state[], int ns, int n);

void cleartree (void);

int igcd (int m, int n);

void initwts (void);

double weight (int state[], int ns, int n);

int stateleq (int state1[], int ns1, int state2[], int ns2);

int mbound (int m, int e);

void copystate (int copy[], int *nc, int state[], int ns);

int leaftest (int state[], int *nsp, int n, int *safe);

int sumtest (int sum[], int ns,

int state1[], int ns1, int state2[], int ns2);

void addstate (int sum[], int *nsp,

int state1[], int ns1, int state2[], int ns2);

int main (int argc, char **argv) {

int win;

int e, k, m, n;

setvbuf (stdout, NULL, _IOLBF, BUFSIZ);

setvbuf (stderr, NULL, _IOLBF, BUFSIZ);

initwts ();

inittree ();

for (k=2; k<=25; k++) {

for (e=1; e<=EMAX; e++) {

n = 3 * e + k;

printf ("\n");

for (m = mbound(n,e); m > 0; m--) {

win = treesearch (e, n, m);

if (win) break;

}

if (m <= mbound(n+3, e+1)) {

win = lifttree(e, n, m);

if (win) break;

}

41

}

}

printf ("\n");

(void) treesearch (10, 56, 1048576);

return 0;

}

int treesearch (int e, int n, int m) {

int state[EMAX+1], ns;

winstate *wp;

int j;

cleartree();

ns = e + 1;

for (j=0; j<e; j++)

state[j] = 0;

state[e] = m;

printf ("E=%d N=%d M=%d: ", e, n, m);

mcurrent = m;

leafnodes = safeleaves = 0;

wp = depthsearch (state, ns, n);

if (wp != 0) {

printf ("OK, %d tree nodes, %d leaf nodes (%d safe).\n",

treenodes, leafnodes, safeleaves);

return 1;

} else {

printf ("Failed, %d search nodes.\n", searchnodes);

return 0;

}

}

int lifttree (int e, int n, int m) {

int state[EMAX+1];

winstate *wp;

int safe;

int ns, nn;

42

while (leafnodes > safeleaves) {

e += 1;

n += 3;

printf ("E=%d N=%d M=%d: ", e, n, m);

leafnodes = safeleaves = 0;

for (nn=n; nn>=3; nn--) {

tree[nn] = tree[nn-3];

tree[nn-3] = 0;

}

for (nn=3; nn<=n; nn++) {

for (wp=tree[nn]; wp!=0; wp=wp->next) {

state[0] = 0;

copystate (state+1, &ns, wp->state, wp->ns);

ns++;

if (wp->left == 0) {

if (! leaftest (state, &ns, nn, &safe))

goto FAIL;

leafnodes++;

if (safe) safeleaves++;

} else {

if (! sumtest (state, ns, wp->left->state, wp->left->ns,

wp->right->state, wp->right->ns)) {

state[0] = 1;

ns = 1;

}

addstate (state, &ns, wp->left->state, wp->left->ns,

wp->right->state, wp->right->ns);

}

copystate (wp->state, &wp->ns, state, ns);

}

}

if (tree[n]->state[e] != m) {

FAIL:

printf ("lift failed.\n");

return 0;

}

printf ("lift succeeded: %d leaf nodes (%d safe).\n",

leafnodes, safeleaves);

43

}

return (leafnodes == safeleaves);

}

winstate *depthsearch (int state[], int ns, int n) {

int cut[EMAX+1], left[EMAX+1], right[EMAX+1], bias[EMAX+1];

int temp[EMAX+1], nr, nt;

winstate *wp, *wpr, *wpl;

double z, v, w, cmin, cmax;

int j, jj, k, nn, biaslvl, safe;

searchnodes++;

/* Memo check */

wp = memotest (state, ns, n);

if (wp != 0) return wp;

/* Check for leaf nodes */

copystate (temp, &nt, state, ns);

if (leaftest (temp, &nt, n, &safe)) {

leafnodes++;

if (safe) safeleaves++;

return addtree (temp, nt, n, 0, 0);

}

for (j=0; j<ns; j++)

bias[j] = 0;

biaslvl = ns-1;

goto TRY;

RETRY:

if (bias[biaslvl] < 0)

bias[biaslvl] = -bias[biaslvl];

else

bias[biaslvl] = -bias[biaslvl] - 1;

if (bias[biaslvl] <= -3) {

bias[biaslvl] = 0;

do {

biaslvl--;

if (biaslvl == 0) return 0;

44

} while (state[biaslvl] == 0);

bias[biaslvl] = -1;

}

TRY:

for (j=0; j<ns; j++)

left[j] = right[j] = 0;

k = 0;

for (j=ns-1; j>=0; j--) {

if (state[j] == 0) {

cut[j] = 0;

continue;

}

k += state[j];

if (k == 1) {

if (bias[j] != 0) goto RETRY;

cut[j] = 0;

goto CUT;

}

if (k == 2) {

cut[j] = 1 + bias[j];

if (cut[j] < 0 || cut[j] > state[j]) goto RETRY;

goto CUT;

}

cmin = -MAXINT;

cmax = MAXINT;

for (jj=j; jj>=0; jj--) {

nn = n - 3*jj - 1;

/* Projected left gap if cut[0..j] == state[0..j] */

v = FEXP (nn) - weight (left+jj, ns-jj, nn) -

weight (state+jj+1, j-jj, nn);

/* Projected right gap if cut[0..j] == 0 */

w = FEXP (nn) - weight (right+jj, ns-jj, nn) -

weight (state+jj+1, j-jj, nn);

if (v < 0.0 || w < 0.0) goto RETRY;

cmin = MAX (cmin, (state[j] - v / bico[nn][j-jj]));

cmax = MIN (cmax, w / bico[nn][j-jj]);

}

45

if (cmin > cmax)

goto RETRY;

z = floor (0.5 * (cmin + cmax + 1));

z = MAX (z, 0.0);

z = MIN (z, state[j]);

cut[j] = z + bias[j];

if (cut[j] < cmin || cut[j] > cmax) goto RETRY;

CUT:

if (cut[j] < 0 || cut[j] > state[j]) goto RETRY;

left[j] += state[j] - cut[j];

right[j] += cut[j];

if (j > 0) {

left[j-1] += cut[j];

right[j-1] += state[j] - cut[j];

}

}

nr = ns;

while (nr > 0 && right[nr-1] == 0)

nr--;

wpl = depthsearch (left, ns, n-1);

if (wpl == 0) goto RETRY;

wpr = depthsearch (right, nr, n-1);

if (wpr == 0) goto RETRY;

copystate (temp, &nt, state, ns);

addstate (temp, &nt, wpl->state, wpl->ns, wpr->state, wpr->ns);

return addtree (temp, nt, n, wpl, wpr);

}

void inittree () {

int n;

for (n=0; n<=NMAX; n++)

tree[n] = 0;

treenodes = 0;

}

46

winstate *addtree

(int state[], int ns, int n, winstate *left, winstate *right) {

winstate *wp;

int j;

for (wp=tree[n]; wp!=0; wp=wp->next)

if (stateleq (state, ns, wp->state, wp->ns))

return wp;

treenodes++;

wp = tree[n];

tree[n] = (winstate *) malloc (sizeof (winstate));

tree[n]->next = wp;

tree[n]->ns = ns;

for (j=0; j<ns; j++)

tree[n]->state[j] = state[j];

tree[n]->left = left;

tree[n]->right = right;

return tree[n];

}

winstate *memotest (int state[], int ns, int n) {

winstate *wp;

wp = tree[n];

while (wp != 0) {

if (stateleq (state, ns, wp->state, wp->ns))

return wp;

wp = wp->next;

}

return 0;

}

void cleartree () {

int n;

winstate *wp, *wpnext;

for (n=0; n<=NMAX; n++) {

47

wp = tree[n];

while (wp != 0) {

wpnext = wp->next;

free (wp);

wp = wpnext;

}

tree[n] = 0;

}

treenodes = 0;

searchnodes = 0;

}

int igcd (int m, int n) {

if (m < 0) m = -m;

if (n < 0) n = -n;

if (m > n) return igcd (n, m);

if (m == 0) return n;

return igcd (n % m, m);

}

void initwts (void) {

int g, j, n;

for (n=0; n<=NMAX; n++) {

bico[n][0] = 1.0;

wts[n][0] = 1.0;

for (j=1; j<=n; j++) {

g = igcd (n-j+1, j);

bico[n][j] = (bico[n][j-1] / (j/g)) * ((n-j+1) / g);

wts[n][j] = wts[n][j-1] + bico[n][j];

}

}

}

double weight (int state[], int ns, int n) {

double w;

int j;

w = 0.0;

48

for (j=0; j<ns; j++) {

w += state[j] * wts[n][j];

}

return w;

}

int stateleq (int state1[], int ns1, int state2[], int ns2) {

int j, k1, k2;

if (ns1 > ns2)

return 0;

k1 = k2 = 0;

for (j=ns2-1; j>ns1-1; j--)

k2 += state2[j];

for (j=ns1-1; j>=0; j--) {

k1 += state1[j];

k2 += state2[j];

if (k2 >= mcurrent) return 1;

if (k1 > k2) return 0;

}

return 1;

}

int mbound (int n, int e) {

int j, m;

double z, zz;

if (n < 2*e+1) {

m = 1;

} else if (n <= 3*e) {

m = 2;

} else {

z = FEXP(n) / wts[n][e];

for (j=1; j<=e; j++) {

zz = FEXP(n-3*j) / wts[n-3*j][e-j];

z = MIN (z, zz);

}

m = floor(z);

}

49

return m;

}

void copystate (int copy[], int *nc, int state[], int ns) {

int i;

*nc = ns;

for (i=0; i<ns; i++)

copy[i] = state[i];

}

int leaftest (int state[], int *nsp, int n, int *safe) {

int leafstate[EMAX+2];

double w;

int i, k, nn, ns;

ns = *nsp;

nn = n - 3 * (ns-1);

if (nn > 4)

return 0;

leafstate[ns] = (nn >= 0) ? (1 << nn) : 1;

for (i=0; i<ns; i++)

leafstate[i] = 0;

k = leafstate[ns];

for (i=1; i<ns; i++) {

nn += 3;

if (nn < i+1) continue;

w = FEXP(nn) - weight (leafstate+(ns-i), i+1, nn);

if (w >= mcurrent-k) {

leafstate[ns-i] = mcurrent - k;

k = mcurrent;

break;

}

leafstate[ns-i] = w;

k += leafstate[ns-i];

}

if (! stateleq (state, ns, leafstate+1, ns))

50

return 0;

copystate (state, nsp, leafstate+1, ns);

*safe = (k >= mcurrent);

return 1;

}

int sumtest

(int sum[], int ns, int state1[], int ns1, int state2[], int ns2) {

int accum, accum1, accum2;

int i;

if (ns1 < ns-1 || ns2 < ns-1) return 0;

accum = sum[ns-1];

accum1 = 0;

for (i=ns-1; i<ns1; i++)

accum1 += state1[i];

accum2 = 0;

for (i=ns-1; i<ns2; i++)

accum2 += state2[i];

if (accum > accum1 + accum2) return 0;

for (i=ns-2; i>=0; i--) {

accum1 += state1[i];

accum2 += state2[i];

if (accum > accum1) return 0;

if (accum > accum2) return 0;

if (sum[i] + 2*accum > accum1 + accum2) return 0;

accum += sum[i];

}

return 1;

}

void addstate

(int sum[], int *nsp, int state1[], int ns1, int state2[], int ns2) {

int accum[EMAX+1], accum1[EMAX+1], accum2[EMAX+1];

int ns, i, j, k;

/* Ensure that output(sum[]) .ge. input(sum[]). */

51

ns = *nsp;

ns = MAX (ns, ns1);

ns = MAX (ns, ns2);

accum[ns] = accum1[ns] = accum2[ns] = 0;

for (i=ns-1; i>=0; i--) {

accum[i] = accum[i+1] + (i < *nsp ? sum[i] : 0);

accum1[i] = accum1[i+1] + (i < ns1 ? state1[i] : 0);

accum2[i] = accum2[i+1] + (i < ns2 ? state2[i] : 0);

}

for (j=ns-1; j>=0; j--) {

k = mcurrent;

k = MIN (k, accum1[j] + accum2[j] - accum[j+1]);

if (j > 0) k = MIN (k, accum1[j-1]);

if (j > 0) k = MIN (k, accum2[j-1]);

if (j > 0) k = MIN (k, accum1[j-1] + accum2[j-1] - accum[j-1]);

if (j > 1) k = MIN (k, accum1[j-2] + accum2[j-2] - accum[j-2]);

accum[j] = k;

}

while (ns > 0 && accum[ns-1] == 0)

ns--;

*nsp = ns;

sum[ns-1] = accum[ns-1];

for (j=ns-2; j>=0; j--) {

accum[j] = MIN (accum[j], mcurrent);

sum[j] = accum[j] - accum[j+1];

}

assert (sumtest (sum, ns, state1, ns1, state2, ns2));

}

52

Appendix B

Program Output

E=1 N=5 M=4: OK, 1 tree nodes, 1 leaf nodes (1 safe).

E=1 N=6 M=8: OK, 1 tree nodes, 1 leaf nodes (1 safe).

E=1 N=7 M=16: OK, 1 tree nodes, 1 leaf nodes (1 safe).

E=1 N=8 M=28: OK, 9 tree nodes, 4 leaf nodes (0 safe).

E=2 N=11 M=28: lift succeeded: 4 leaf nodes (2 safe).

E=3 N=14 M=28: lift succeeded: 4 leaf nodes (4 safe).

E=1 N=9 M=51: Failed, 1 search nodes.

E=1 N=9 M=50: OK, 12 tree nodes, 4 leaf nodes (0 safe).

E=2 N=12 M=50: lift failed.

E=2 N=12 M=51: Failed, 1 search nodes.

E=2 N=12 M=50: OK, 22 tree nodes, 8 leaf nodes (0 safe).

E=3 N=15 M=50: lift succeeded: 8 leaf nodes (4 safe).

E=4 N=18 M=50: lift succeeded: 8 leaf nodes (8 safe).

E=1 N=10 M=93: Failed, 1 search nodes.

E=1 N=10 M=92: OK, 13 tree nodes, 3 leaf nodes (0 safe).

E=2 N=13 M=89: Failed, 1 search nodes.

E=2 N=13 M=88: OK, 25 tree nodes, 8 leaf nodes (0 safe).

E=3 N=16 M=88: lift succeeded: 8 leaf nodes (1 safe).

E=4 N=19 M=88: lift succeeded: 8 leaf nodes (6 safe).

E=5 N=22 M=88: lift succeeded: 8 leaf nodes (8 safe).

53

E=1 N=11 M=170: OK, 16 tree nodes, 3 leaf nodes (0 safe).

E=2 N=14 M=154: OK, 31 tree nodes, 7 leaf nodes (0 safe).

E=3 N=17 M=154: lift succeeded: 7 leaf nodes (0 safe).

E=4 N=20 M=154: lift succeeded: 7 leaf nodes (3 safe).

E=5 N=23 M=154: lift succeeded: 7 leaf nodes (7 safe).

E=1 N=12 M=315: Failed, 1 search nodes.

E=1 N=12 M=314: OK, 18 tree nodes, 3 leaf nodes (0 safe).

E=2 N=15 M=270: OK, 34 tree nodes, 6 leaf nodes (0 safe).

E=3 N=18 M=265: Failed, 1 search nodes.

E=3 N=18 M=264: OK, 54 tree nodes, 9 leaf nodes (0 safe).

E=4 N=21 M=264: lift succeeded: 9 leaf nodes (0 safe).

E=5 N=24 M=264: lift succeeded: 9 leaf nodes (4 safe).

E=6 N=27 M=264: lift succeeded: 9 leaf nodes (9 safe).

E=1 N=13 M=585: Failed, 1 search nodes.

E=1 N=13 M=584: OK, 18 tree nodes, 3 leaf nodes (0 safe).

E=2 N=16 M=478: OK, 39 tree nodes, 5 leaf nodes (0 safe).

E=3 N=19 M=451: OK, 116 tree nodes, 9 leaf nodes (0 safe).

E=4 N=22 M=451: lift succeeded: 9 leaf nodes (0 safe).

E=5 N=25 M=451: lift succeeded: 9 leaf nodes (1 safe).

E=6 N=28 M=451: lift succeeded: 9 leaf nodes (7 safe).

E=7 N=31 M=451: lift succeeded: 9 leaf nodes (9 safe).

E=1 N=14 M=1092: OK, 21 tree nodes, 3 leaf nodes (0 safe).

E=2 N=17 M=851: Failed, 1 search nodes.

E=2 N=17 M=850: OK, 40 tree nodes, 5 leaf nodes (0 safe).

E=3 N=20 M=776: OK, 67 tree nodes, 9 leaf nodes (0 safe).

E=4 N=23 M=769: Failed, 1 search nodes.

E=4 N=23 M=768: OK, 74 tree nodes, 13 leaf nodes (0 safe).

E=5 N=26 M=768: lift succeeded: 13 leaf nodes (0 safe).

E=6 N=29 M=768: lift succeeded: 13 leaf nodes (3 safe).

E=7 N=32 M=768: lift succeeded: 13 leaf nodes (10 safe).

54

E=8 N=35 M=768: lift succeeded: 13 leaf nodes (13 safe).

E=1 N=15 M=2048: OK, 14 tree nodes, 2 leaf nodes (0 safe).

E=2 N=18 M=1524: OK, 45 tree nodes, 5 leaf nodes (0 safe).

E=3 N=21 M=1342: OK, 86 tree nodes, 8 leaf nodes (0 safe).

E=4 N=24 M=1295: Failed, 1 search nodes.

E=4 N=24 M=1294: OK, 131 tree nodes, 11 leaf nodes (0 safe).

E=5 N=27 M=1294: lift succeeded: 11 leaf nodes (0 safe).

E=6 N=30 M=1294: lift succeeded: 11 leaf nodes (0 safe).

E=7 N=33 M=1294: lift succeeded: 11 leaf nodes (6 safe).

E=8 N=36 M=1294: lift succeeded: 11 leaf nodes (11 safe).

E=1 N=16 M=3855: Failed, 1 search nodes.

E=1 N=16 M=3854: OK, 26 tree nodes, 3 leaf nodes (0 safe).

E=2 N=19 M=2744: OK, 47 tree nodes, 4 leaf nodes (0 safe).

E=3 N=22 M=2337: OK, 122 tree nodes, 7 leaf nodes (0 safe).

E=4 N=25 M=2196: OK, 151 tree nodes, 10 leaf nodes (0 safe).

E=5 N=28 M=2192: OK, 331 tree nodes, 15 leaf nodes (0 safe).

E=6 N=31 M=2192: lift succeeded: 15 leaf nodes (0 safe).

E=7 N=34 M=2192: lift succeeded: 15 leaf nodes (1 safe).

E=8 N=37 M=2192: lift succeeded: 15 leaf nodes (8 safe).

E=9 N=40 M=2192: lift succeeded: 15 leaf nodes (13 safe).

E=10 N=43 M=2192: lift succeeded: 15 leaf nodes (15 safe).

E=1 N=17 M=7281: Failed, 1 search nodes.

E=1 N=17 M=7280: OK, 25 tree nodes, 3 leaf nodes (0 safe).

E=2 N=20 M=4969: Failed, 1 search nodes.

E=2 N=20 M=4968: OK, 46 tree nodes, 4 leaf nodes (0 safe).

E=3 N=23 M=4096: OK, 43 tree nodes, 6 leaf nodes (0 safe).

E=4 N=26 M=3748: OK, 161 tree nodes, 9 leaf nodes (0 safe).

E=5 N=29 M=3662: OK, 276 tree nodes, 13 leaf nodes (0 safe).

55

E=6 N=32 M=3662: lift succeeded: 13 leaf nodes (0 safe).

E=7 N=35 M=3662: lift succeeded: 13 leaf nodes (0 safe).

E=8 N=38 M=3662: lift succeeded: 13 leaf nodes (1 safe).

E=9 N=41 M=3662: lift succeeded: 13 leaf nodes (8 safe).

E=10 N=44 M=3662: lift succeeded: 13 leaf nodes (13 safe).

E=1 N=18 M=13797: Failed, 1 search nodes.

E=1 N=18 M=13796: OK, 29 tree nodes, 3 leaf nodes (0 safe).

E=2 N=21 M=9039: Failed, 1 search nodes.

E=2 N=21 M=9038: OK, 57 tree nodes, 4 leaf nodes (0 safe).

E=3 N=24 M=7216: OK, 86 tree nodes, 6 leaf nodes (0 safe).

E=4 N=27 M=6436: OK, 171 tree nodes, 9 leaf nodes (0 safe).

E=5 N=30 M=6155: Failed, 1 search nodes.

E=5 N=30 M=6154: OK, 276 tree nodes, 12 leaf nodes (0 safe).

E=6 N=33 M=6154: lift succeeded: 12 leaf nodes (0 safe).

E=7 N=36 M=6154: lift succeeded: 12 leaf nodes (0 safe).

E=8 N=39 M=6154: lift succeeded: 12 leaf nodes (0 safe).

E=9 N=42 M=6154: lift succeeded: 12 leaf nodes (3 safe).

E=10 N=45 M=6154: lift succeeded: 12 leaf nodes (10 safe).

E=11 N=48 M=6154: lift succeeded: 12 leaf nodes (12 safe).

E=1 N=19 M=26214: OK, 32 tree nodes, 3 leaf nodes (0 safe).

E=2 N=22 M=16513: Failed, 1 search nodes.

E=2 N=22 M=16512: OK, 40 tree nodes, 4 leaf nodes (0 safe).

E=3 N=25 M=12777: Failed, 224 search nodes.

E=3 N=25 M=12776: OK, 100 tree nodes, 6 leaf nodes (0 safe).

E=4 N=28 M=11111: Failed, 1 search nodes.

E=4 N=28 M=11110: OK, 180 tree nodes, 9 leaf nodes (0 safe).

E=5 N=31 M=10406: OK, 297 tree nodes, 11 leaf nodes (0 safe).

E=6 N=34 M=10249: OK, 1369 tree nodes, 16 leaf nodes (0 safe).

E=7 N=37 M=10249: lift succeeded: 16 leaf nodes (0 safe).

E=8 N=40 M=10249: lift succeeded: 16 leaf nodes (0 safe).

E=9 N=43 M=10249: lift succeeded: 16 leaf nodes (0 safe).

56

E=10 N=46 M=10249: lift succeeded: 16 leaf nodes (5 safe).

E=11 N=49 M=10249: lift succeeded: 16 leaf nodes (13 safe).

E=12 N=52 M=10249: lift succeeded: 16 leaf nodes (16 safe).

E=1 N=20 M=49932: OK, 33 tree nodes, 3 leaf nodes (0 safe).

E=2 N=23 M=30283: Failed, 1 search nodes.

E=2 N=23 M=30282: OK, 67 tree nodes, 5 leaf nodes (0 safe).

E=3 N=26 M=22733: Failed, 1 search nodes.

E=3 N=26 M=22732: OK, 101 tree nodes, 6 leaf nodes (0 safe).

E=4 N=29 M=19283: Failed, 1 search nodes.

E=4 N=29 M=19282: OK, 219 tree nodes, 9 leaf nodes (0 safe).

E=5 N=32 M=17687: Failed, 1 search nodes.

E=5 N=32 M=17686: OK, 359 tree nodes, 10 leaf nodes (0 safe).

E=6 N=35 M=17117: Failed, 1 search nodes.

E=6 N=35 M=17116: OK, 557 tree nodes, 14 leaf nodes (0 safe).

E=7 N=38 M=17116: lift succeeded: 14 leaf nodes (0 safe).

E=8 N=41 M=17116: lift succeeded: 14 leaf nodes (0 safe).

E=9 N=44 M=17116: lift failed.

E=7 N=38 M=17117: Failed, 1 search nodes.

E=7 N=38 M=17116: OK, 572 tree nodes, 21 leaf nodes (0 safe).

E=8 N=41 M=17116: lift succeeded: 21 leaf nodes (0 safe).

E=9 N=44 M=17116: lift failed.

E=8 N=41 M=17117: Failed, 1 search nodes.

E=8 N=41 M=17116: OK, 572 tree nodes, 21 leaf nodes (0 safe).

E=9 N=44 M=17116: lift failed.

E=9 N=44 M=17117: Failed, 1 search nodes.

E=9 N=44 M=17116: OK, 676 tree nodes, 21 leaf nodes (0 safe).

E=10 N=47 M=17116: lift succeeded: 21 leaf nodes (0 safe).

E=11 N=50 M=17116: lift succeeded: 21 leaf nodes (8 safe).

E=12 N=53 M=17116: lift succeeded: 21 leaf nodes (17 safe).

E=13 N=56 M=17116: lift succeeded: 21 leaf nodes (21 safe).

E=1 N=21 M=95325: Failed, 1 search nodes.

E=1 N=21 M=95324: OK, 35 tree nodes, 3 leaf nodes (0 safe).

57

E=2 N=24 M=55738: OK, 68 tree nodes, 5 leaf nodes (0 safe).

E=3 N=27 M=40622: OK, 131 tree nodes, 6 leaf nodes (0 safe).

E=4 N=30 M=33626: OK, 206 tree nodes, 7 leaf nodes (0 safe).

E=5 N=33 M=30217: Failed, 1 search nodes.

E=5 N=33 M=30216: OK, 345 tree nodes, 10 leaf nodes (0 safe).

E=6 N=36 M=28734: OK, 706 tree nodes, 13 leaf nodes (0 safe).

E=7 N=39 M=28467: OK, 4410 tree nodes, 19 leaf nodes (0 safe).

E=8 N=42 M=28467: lift succeeded: 19 leaf nodes (0 safe).

E=9 N=45 M=28467: lift succeeded: 19 leaf nodes (0 safe).

E=10 N=48 M=28467: lift succeeded: 19 leaf nodes (0 safe).

E=11 N=51 M=28467: lift succeeded: 19 leaf nodes (1 safe).

E=12 N=54 M=28467: lift succeeded: 19 leaf nodes (11 safe).

E=13 N=57 M=28467: lift succeeded: 19 leaf nodes (17 safe).

E=14 N=60 M=28467: lift succeeded: 19 leaf nodes (19 safe).

E=1 N=22 M=182361: Failed, 1 search nodes.

E=1 N=22 M=182360: OK, 36 tree nodes, 3 leaf nodes (0 safe).

E=2 N=25 M=102927: Failed, 1 search nodes.

E=2 N=25 M=102926: OK, 70 tree nodes, 5 leaf nodes (0 safe).

E=3 N=28 M=72885: Failed, 1 search nodes.

E=3 N=28 M=72884: OK, 113 tree nodes, 5 leaf nodes (0 safe).

E=4 N=31 M=58904: OK, 206 tree nodes, 7 leaf nodes (0 safe).

E=5 N=34 M=51869: Failed, 1 search nodes.

E=5 N=34 M=51868: OK, 404 tree nodes, 10 leaf nodes (0 safe).

E=6 N=37 M=48475: Failed, 2212 search nodes.

E=6 N=37 M=48474: OK, 584 tree nodes, 13 leaf nodes (0 safe).

E=7 N=40 M=47307: Failed, 1 search nodes.

E=7 N=40 M=47306: OK, 1071 tree nodes, 16 leaf nodes (0 safe).

E=8 N=43 M=47306: lift succeeded: 16 leaf nodes (0 safe).

E=9 N=46 M=47306: lift succeeded: 16 leaf nodes (0 safe).

58

E=10 N=49 M=47306: lift failed.

E=8 N=43 M=47307: Failed, 1 search nodes.

E=8 N=43 M=47306: OK, 1071 tree nodes, 16 leaf nodes (0 safe).

E=9 N=46 M=47306: lift succeeded: 16 leaf nodes (0 safe).

E=10 N=49 M=47306: lift failed.

E=9 N=46 M=47307: Failed, 1 search nodes.

E=9 N=46 M=47306: OK, 1071 tree nodes, 16 leaf nodes (0 safe).

E=10 N=49 M=47306: lift failed.

E=10 N=49 M=47307: Failed, 1 search nodes.

E=10 N=49 M=47306: OK, 1574 tree nodes, 16 leaf nodes (0 safe).

E=11 N=52 M=47306: lift succeeded: 16 leaf nodes (0 safe).

E=12 N=55 M=47306: lift succeeded: 16 leaf nodes (4 safe).

E=13 N=58 M=47306: lift succeeded: 16 leaf nodes (12 safe).

E=14 N=61 M=47306: lift succeeded: 16 leaf nodes (16 safe).

E=1 N=23 M=349525: Failed, 1 search nodes.

E=1 N=23 M=349524: OK, 39 tree nodes, 3 leaf nodes (0 safe).

E=2 N=26 M=190650: OK, 77 tree nodes, 5 leaf nodes (0 safe).

E=3 N=29 M=131264: OK, 105 tree nodes, 6 leaf nodes (0 safe).

E=4 N=32 M=103620: OK, 214 tree nodes, 7 leaf nodes (0 safe).

E=5 N=35 M=89439: Failed, 1 search nodes.

E=5 N=35 M=89438: OK, 494 tree nodes, 10 leaf nodes (0 safe).

E=6 N=38 M=82160: OK, 605 tree nodes, 12 leaf nodes (0 safe).

E=7 N=41 M=78986: OK, 1336 tree nodes, 15 leaf nodes (0 safe).

E=8 N=44 M=78589: OK, 10920 tree nodes, 23 leaf nodes (0 safe).

E=9 N=47 M=78589: lift succeeded: 23 leaf nodes (0 safe).

E=10 N=50 M=78589: lift failed.

E=9 N=47 M=78589: OK, 10920 tree nodes, 23 leaf nodes (0 safe).

E=10 N=50 M=78589: lift failed.

E=10 N=50 M=78589: OK, 17324 tree nodes, 23 leaf nodes (0 safe).

59

E=11 N=53 M=78589: lift succeeded: 23 leaf nodes (0 safe).

E=12 N=56 M=78589: lift succeeded: 23 leaf nodes (0 safe).

E=13 N=59 M=78589: lift succeeded: 23 leaf nodes (8 safe).

E=14 N=62 M=78589: lift succeeded: 23 leaf nodes (18 safe).

E=15 N=65 M=78589: lift succeeded: 23 leaf nodes (23 safe).

E=1 N=24 M=671088: OK, 39 tree nodes, 3 leaf nodes (0 safe).

E=2 N=27 M=354136: OK, 76 tree nodes, 5 leaf nodes (0 safe).

E=3 N=30 M=237238: OK, 124 tree nodes, 6 leaf nodes (0 safe).

E=4 N=33 M=183005: OK, 434 tree nodes, 8 leaf nodes (0 safe).

E=5 N=36 M=154876: OK, 361 tree nodes, 10 leaf nodes (0 safe).

E=6 N=39 M=139867: Failed, 1 search nodes.

E=6 N=39 M=139866: OK, 812 tree nodes, 11 leaf nodes (0 safe).

E=7 N=42 M=132474: OK, 1135 tree nodes, 14 leaf nodes (0 safe).

E=8 N=45 M=130088: OK, 2050 tree nodes, 20 leaf nodes (0 safe).

E=9 N=48 M=130088: lift succeeded: 20 leaf nodes (0 safe).

E=10 N=51 M=130088: lift succeeded: 20 leaf nodes (0 safe).

E=11 N=54 M=130088: lift failed.

E=9 N=48 M=130088: OK, 2060 tree nodes, 28 leaf nodes (0 safe).

E=10 N=51 M=130088: lift succeeded: 28 leaf nodes (0 safe).

E=11 N=54 M=130088: lift failed.

E=10 N=51 M=130088: OK, 2060 tree nodes, 28 leaf nodes (0 safe).

E=11 N=54 M=130088: lift failed.

E=11 N=54 M=130088: OK, 3013 tree nodes, 28 leaf nodes (0 safe).

E=12 N=57 M=130088: lift succeeded: 28 leaf nodes (0 safe).

E=13 N=60 M=130088: lift succeeded: 28 leaf nodes (3 safe).

E=14 N=63 M=130088: lift succeeded: 28 leaf nodes (13 safe).

E=15 N=66 M=130088: lift succeeded: 28 leaf nodes (21 safe).

E=16 N=69 M=130088: lift succeeded: 28 leaf nodes (26 safe).

E=17 N=72 M=130088: lift succeeded: 28 leaf nodes (28 safe).

E=1 N=25 M=1290555: Failed, 1 search nodes.

60

E=1 N=25 M=1290554: OK, 44 tree nodes, 3 leaf nodes (0 safe).

E=2 N=28 M=659546: OK, 82 tree nodes, 5 leaf nodes (0 safe).

E=3 N=31 M=430185: Failed, 1 search nodes.

E=3 N=31 M=430184: OK, 129 tree nodes, 6 leaf nodes (0 safe).

E=4 N=34 M=324417: Failed, 558 search nodes.

E=4 N=34 M=324416: OK, 224 tree nodes, 8 leaf nodes (0 safe).

E=5 N=37 M=269268: OK, 457 tree nodes, 10 leaf nodes (0 safe).

E=6 N=40 M=239103: Failed, 1 search nodes.

E=6 N=40 M=239102: OK, 868 tree nodes, 11 leaf nodes (0 safe).

E=7 N=43 M=223138: OK, 1236 tree nodes, 14 leaf nodes (0 safe).

E=8 N=46 M=216269: OK, 8760 tree nodes, 17 leaf nodes (0 safe).

E=9 N=49 M=215900: OK, 18900 tree nodes, 30 leaf nodes (0 safe).

E=10 N=52 M=215900: lift succeeded: 30 leaf nodes (0 safe).

E=11 N=55 M=215900: lift failed.

E=10 N=52 M=215900: OK, 18900 tree nodes, 30 leaf nodes (0 safe).

E=11 N=55 M=215900: lift failed.

E=11 N=55 M=215900: OK, 34232 tree nodes, 30 leaf nodes (0 safe).

E=12 N=58 M=215900: lift succeeded: 30 leaf nodes (0 safe).

E=13 N=61 M=215900: lift succeeded: 30 leaf nodes (0 safe).

E=14 N=64 M=215900: lift succeeded: 30 leaf nodes (6 safe).

E=15 N=67 M=215900: lift succeeded: 30 leaf nodes (18 safe).

E=16 N=70 M=215900: lift succeeded: 30 leaf nodes (26 safe).

E=17 N=73 M=215900: lift succeeded: 30 leaf nodes (30 safe).

E=1 N=26 M=2485513: Failed, 1 search nodes.

E=1 N=26 M=2485512: OK, 44 tree nodes, 3 leaf nodes (0 safe).

E=2 N=29 M=1231355: Failed, 1 search nodes.

E=2 N=29 M=1231354: OK, 79 tree nodes, 5 leaf nodes (0 safe).

E=3 N=32 M=782468: OK, 136 tree nodes, 6 leaf nodes (0 safe).

61

E=4 N=35 M=577125: Failed, 1 search nodes.

E=4 N=35 M=577124: OK, 241 tree nodes, 8 leaf nodes (0 safe).

E=5 N=38 M=469928: OK, 409 tree nodes, 10 leaf nodes (0 safe).

E=6 N=41 M=410374: OK, 893 tree nodes, 12 leaf nodes (0 safe).

E=7 N=44 M=377388: OK, 1554 tree nodes, 15 leaf nodes (0 safe).

E=8 N=47 M=361035: Failed, 1 search nodes.

E=8 N=47 M=361034: OK, 2285 tree nodes, 18 leaf nodes (0 safe).

E=9 N=50 M=356245: OK, 15868 tree nodes, 26 leaf nodes (0 safe).

E=10 N=53 M=356245: lift failed.

E=10 N=53 M=356245: OK, 15908 tree nodes, 38 leaf nodes (0 safe).

E=11 N=56 M=356245: lift succeeded: 38 leaf nodes (0 safe).

E=12 N=59 M=356245: lift failed.

E=11 N=56 M=356245: OK, 15908 tree nodes, 38 leaf nodes (0 safe).

E=12 N=59 M=356245: lift failed.

E=12 N=59 M=356245: OK, 23370 tree nodes, 38 leaf nodes (0 safe).

E=13 N=62 M=356245: lift succeeded: 38 leaf nodes (0 safe).

E=14 N=65 M=356245: lift succeeded: 38 leaf nodes (1 safe).

E=15 N=68 M=356245: lift succeeded: 38 leaf nodes (12 safe).

E=16 N=71 M=356245: lift succeeded: 38 leaf nodes (25 safe).

E=17 N=74 M=356245: lift succeeded: 38 leaf nodes (34 safe).

E=18 N=77 M=356245: lift succeeded: 38 leaf nodes (38 safe).

E=1 N=27 M=4793490: OK, 48 tree nodes, 3 leaf nodes (0 safe).

E=2 N=30 M=2304167: Failed, 1 search nodes.

E=2 N=30 M=2304166: OK, 92 tree nodes, 5 leaf nodes (0 safe).

E=3 N=33 M=1427373: Failed, 1 search nodes.

E=3 N=33 M=1427372: OK, 150 tree nodes, 6 leaf nodes (0 safe).

E=4 N=36 M=1030091: Failed, 1 search nodes.

E=4 N=36 M=1030090: OK, 294 tree nodes, 8 leaf nodes (0 safe).

E=5 N=39 M=823076: OK, 486 tree nodes, 9 leaf nodes (0 safe).

62

E=6 N=42 M=706994: OK, 1134 tree nodes, 12 leaf nodes (0 safe).

E=7 N=45 M=640756: OK, 1380 tree nodes, 15 leaf nodes (0 safe).

E=8 N=48 M=605094: OK, 2386 tree nodes, 18 leaf nodes (0 safe).

E=9 N=51 M=590174: OK, 4145 tree nodes, 23 leaf nodes (0 safe).

E=10 N=54 M=590174: lift failed.

E=10 N=54 M=590174: OK, 4034 tree nodes, 36 leaf nodes (0 safe).

E=11 N=57 M=590174: lift succeeded: 36 leaf nodes (0 safe).

E=12 N=60 M=590174: lift failed.

E=11 N=57 M=590174: OK, 4034 tree nodes, 36 leaf nodes (0 safe).

E=12 N=60 M=590174: lift failed.

E=12 N=60 M=590174: OK, 8544 tree nodes, 36 leaf nodes (0 safe).

E=13 N=63 M=590174: lift succeeded: 36 leaf nodes (0 safe).

E=14 N=66 M=590174: lift failed.

E=13 N=63 M=590174: OK, 9471 tree nodes, 36 leaf nodes (0 safe).

E=14 N=66 M=590174: lift failed.

E=14 N=66 M=590174: OK, 11852 tree nodes, 36 leaf nodes (0 safe).

E=15 N=69 M=590174: lift succeeded: 36 leaf nodes (5 safe).

E=16 N=72 M=590174: lift succeeded: 36 leaf nodes (19 safe).

E=17 N=75 M=590174: lift succeeded: 36 leaf nodes (29 safe).

E=18 N=78 M=590174: lift succeeded: 36 leaf nodes (34 safe).

E=19 N=81 M=590174: lift succeeded: 36 leaf nodes (36 safe).

E=1 N=28 M=9256395: Failed, 1 search nodes.

E=1 N=28 M=9256394: OK, 50 tree nodes, 3 leaf nodes (0 safe).

E=2 N=31 M=4320892: OK, 94 tree nodes, 5 leaf nodes (0 safe).

E=3 N=34 M=2610922: OK, 161 tree nodes, 6 leaf nodes (0 safe).

E=4 N=37 M=1844347: Failed, 532 search nodes.

E=4 N=37 M=1844346: OK, 297 tree nodes, 8 leaf nodes (0 safe).

E=5 N=40 M=1446537: Failed, 1 search nodes.

63

E=5 N=40 M=1446536: OK, 444 tree nodes, 9 leaf nodes (0 safe).

E=6 N=43 M=1222401: Failed, 1 search nodes.

E=6 N=43 M=1222400: OK, 699 tree nodes, 12 leaf nodes (0 safe).

E=7 N=46 M=1091975: Failed, 1 search nodes.

E=7 N=46 M=1091974: OK, 1860 tree nodes, 15 leaf nodes (0 safe).

E=8 N=49 M=1017991: Failed, 1 search nodes.

E=8 N=49 M=1017990: OK, 2301 tree nodes, 18 leaf nodes (0 safe).

E=9 N=52 M=981465: Failed, 1 search nodes.

E=9 N=52 M=981464: OK, 4444 tree nodes, 23 leaf nodes (0 safe).

E=10 N=55 M=972164: OK, 14922 tree nodes, 33 leaf nodes (0 safe).

E=11 N=58 M=972164: lift succeeded: 33 leaf nodes (0 safe).

E=12 N=61 M=972164: lift failed.

E=11 N=58 M=972164: OK, 14930 tree nodes, 47 leaf nodes (0 safe).

E=12 N=61 M=972164: lift failed.

E=12 N=61 M=972164: OK, 16684 tree nodes, 47 leaf nodes (0 safe).

E=13 N=64 M=972164: lift failed.

E=13 N=64 M=972164: OK, 22001 tree nodes, 47 leaf nodes (0 safe).

E=14 N=67 M=972164: lift succeeded: 47 leaf nodes (0 safe).

E=15 N=70 M=972164: lift failed.

E=14 N=67 M=972164: OK, 19902 tree nodes, 47 leaf nodes (0 safe).

E=15 N=70 M=972164: lift succeeded: 47 leaf nodes (0 safe).

E=16 N=73 M=972164: lift succeeded: 47 leaf nodes (10 safe).

E=17 N=76 M=972164: lift succeeded: 47 leaf nodes (26 safe).

E=18 N=79 M=972164: lift succeeded: 47 leaf nodes (37 safe).

E=19 N=82 M=972164: lift succeeded: 47 leaf nodes (44 safe).

E=20 N=85 M=972164: lift succeeded: 47 leaf nodes (47 safe).

E=10 N=56 M=1048577: OK, 190 tree nodes, 1 leaf nodes (1 safe).

64

Bibliography

[Balakirsky] Vladimir B. Balakirsky, A Direct Approach to Searching with Lies,

submitted to Discrete Mathematics. Author is currently with Fakultät

für Mathematik, Universität Bielefeld, Postfach 100131, D-33501

Bielefeld 1, Germany, submitted

[Berlekamp] Elwyn R. Berlekamp, Block Coding with Noiseless Feedback, doctoral

dissertation, Massachusetts Institute of Technology, 1964.

[Berlekamp2] Elwyn R. Berlekamp, Block Coding for the Binary Symmetric Channel

with Noiseless, Delayless Feedback in Error Correcting Codes, Pro-

ceedings of a Symposium Conducted by the Mathematics Research

Center, United States Army at the University of Wisconsin, Madison,

edited by Henry B. Mann, John Wiley & Sons, Inc. (May 6–8, 1968),

pp. 61–88.

[Cesa-Bianchi] Nicoló Cesa-Bianchi, Yoav Freund, David P. Helmbold, and Man-

fred K. Warmuth, On-line Prediction and Conversion Strategies in

Machine Learning 25, Kluwer Academic Publishers, Boston (1996),

pp. 71–110.

[Czyzowicz] Jurek Czyzowicz, Daniele Mundici, and Andrezej Pelc, Ulam’s Search-

ing Game with Lies in Journal of Combinatorial Theory, Series A 52

(1989), pp. 62–76.

[Deppe] Christian Deppe, Solution of Ulam’s Searching Game with Three Lies

65

or an Optimal Adaptive Strategy for Binary Three-Error-Correcting-

Codes, doctoral dissertation, Universität Bielefeld, 1998.

[Hill] Ray Hill, Searching with Lies, Department of Mathematics & Com-

puter Science, University of Salford, Salford M5 4WT, England.

[Hill2] Ray Hill, J. P. Karim, and Elwyn R. Berlekamp, The Solution of a

problem of Ulam on searching with lies.

[Hill3] Ray Hill, J. P. Karim, and Elwyn R. Berlekamp, The Solution of a

problem of Ulam on searching with lies.

[Karp] Richard M. Karp, ISIT’98 Plenary Lecture Report: Variations on the

Theme of ‘Twenty Questions’ in IEEE Information Theory Society

Newsletter 49 No. 1, edited by Kimberly Wasserman, March 1999,

pp. 1–5, 21–22.

[Lawler] Eugene L. Lawler and Sergei Sarkissian, An algorithm for “Ulam’s

Game” and its application to error correcting codes in Information

Processing Letters 56, Elsevier (1995), pp. 89-93.

[Pelc] Andrzej Pelc, Solution of Ulam’s Problem on Searching with a Lie in

Journal of Combinatorial Theory, Series A 44 (1987), pp. 129–140.

[Piccione] Michele Piccione and Ariel Rubinstein, On the Interpretation of De-

cision Problems with Imperfect Recall, in Games and Economic Be-

havior 20, Article No. GA970536, (1997), pp. 3–24.

[Spencer] Joel Spencer, Ulam’s searching game with a fixed number of lies in

Theoretical Computer Science 95, Elsevier (1992), pp. 307–321.

[Spencer2] Joel Spencer, Randomization, derandomization and antirandomiza-

tion: three games in Theoretical Computer Science 131, Elsevier

(1994), pp. 415–429.

66

[Ulam] Adventures of a Mathematician, University of California Press, Berke-

ley, CA, 1992.

